Служба защиты прав потребителей

Смо выбор показателей эффективности системы. На практическом занятии рассмотрим этот путь и сравним результаты моделирования с теоретическим решением. Вероятность обслуживания равна

Курсовая работа

«Имитационное моделирование системы массового обслуживания»

по курсу «Исследование операций»

Введение

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО). Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок. В качестве показателей эффективности СМО используются:

– Абсолютная пропускная способность системы (А

Q

– вероятность отказа обслуживания заявки ();

k );

– среднее число заявок в очереди ();

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.

1. Основные характеристики CМОи показатели их эффективности

1.1 Понятие марковского случайного процесса

Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

При анализе процессов работы СМО удобно пользоваться геометрической схемой – графом состояний . Обычно состояния системы изображаются прямоугольниками, а возможные переходы из состояния в состояние – стрелками. Пример графа состояний приведен на рис. 1.


Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется ординарным, если вероятность попадания на малый участок времени двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и число событий, попадающих на одно из них, не зависит от числа событий, попадающих на другие.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия.

1.2 Уравнения Колмогорова

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:

Получается система из ( n +1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А ), т.е. среднее число заявок, обслуживаемых в единицу времени;

– относительная пропускная способность (Q ), т.е. средняя доля поступивших заявок, обслуживаемых системой;

– вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

– среднее число занятых каналов (k );

– среднее число заявок в СМО ();

– среднее время пребывания заявки в системе ();

– среднее число заявок в очереди () – длина очереди;

– среднее число заявок в системе ();

– среднее время пребывания заявки в очереди ();

– среднее время пребывания заявки в системе ()

– степень загрузки канала (), т.е. вероятность того, что канал занят;

– среднее число заявок, обслуживаемых в единицу времени;

– среднее время ожидания обслуживания;

– вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.


Таблица 1.

Показатели

Одноканальная СМО с

ограниченной очередью

Многоканальная СМО с

ограниченной очередью

Финальные

вероятности

Вероятность

Абсолютная пропускная

способность

Относительная пропускная

способность

Среднее число заявок в

Среднее число заявок под

обслуживанием

Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины с любой непрерывной и монотонно возрастающей функцией распределения достаточно уметь моделировать случайную величину , равномерно распределенную на отрезке . Получив реализацию случайной величины , можно найти соответствующую ей реализацию случайной величины , так как они связаны равенством

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром , где – интенсивность потока обслуживания. Тогда функция распределения времени обслуживания имеет вид

Пусть - реализация случайной величины , равномерно распределенной на отрезке , а – соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.5.1)

1.6 Построение имитационных моделей

Первый этап создания любой имитационной модели – этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений , показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра определяются следующим образом:


, , т.е. , где

Исправленная дисперсия, ,

N – число прогонов программы, – надежность, .

2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим двухканальную систему массового обслуживания (n = 2) с ограниченной очередью равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Данная система имеет 7 состояний, обозначим их:

S 0 – система свободная, нет заявок;

S 1 – 1 заявка на обслуживании, очередь пуста;

S 2 – 2 заявки на обслуживании, очередь пуста;

S 3 – 2 заявки на обслуживании, 1 заявка в очереди;

S 4 – 2 заявки на обслуживании, 2 заявки в очереди;

S 5 – 2 заявки на обслуживании, 3 заявки в очереди;

S 6 – 2 заявки на обслуживании, 4 заявки в очереди;

Вероятности прихода системы в состояния S 0 , S 1 , S 2 , …, S 6 соответственно равны Р 0 , Р 1 , Р 2 , …, Р 6 .

Граф состояний системы массового обслуживания представляет собой схему гибели и размножения. Все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим.

Рис. 3. Граф состояний двухканальной СМО


Для построенного графа запишем уравнения Колмогорова:

Чтобы решить данную систему зададим начальные условия:

Систему уравнений Колмогорова (систему дифференциальных уравнений) решим численным методом Эйлера с помощью программного пакета Maple 11 (см. Приложение 1).

Метод Эйлера


где- в нашем случае, это правые части уравнений Колмогорова, n=6.

Выберем шаг по времени . Предположим , где Т – это время, за которое система выходит на стационарный режим. Отсюда получаем число шагов . Последовательно N раз вычисляя по формуле (1) получим зависимости вероятностей состояний системы от времени, приведенной на рис. 4.

Значения вероятностей СМО при равны:


Рис. 4. Зависимости вероятностей состояний системы от времени

P 0
P 5
P 4
P 3
P 2
P 1
2.2 Финальные вероятности системы

При достаточно большом времени протекания процессов в системе () могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов можно перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Т.к. в стационарном состоянии производные по времени равны 0, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания правых частей 0. Запишем уравнения для финальных вероятностей для нашей СМО.


Решим данную систему линейных уравнений с помощью программного пакета Maple 11 (см. Приложение 1).

Получим финальные вероятности системы:

Сравнение вероятностей, полученных из системы уравнений Колмогорова при , с финальными вероятностями показывает, что ошибки равны:

Т.е. достаточно малы. Это подтверждает правильность полученных результатов.

2.3 Расчет показатели эффективности системы по финальным вероятностям

Найдем показатели эффективности системы массового обслуживания.

Сначала вычислим приведенную интенсивность потока заявок:

1) Вероятность отказав обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди), это соответствует состоянию системы S 6 . Т.к. вероятность прихода системы в состояние S 6 равна Р 6 , то

4) Средняя длина очереди, т.е. среднее число заявок в очереди, равна сумме произведений числа заявок в очереди на вероятность соответствующего состояния.

5) Среднее время пребывания заявки в очередиопределяется формулой Литтла:

3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

Рассмотрим двухканальную систему массового обслуживания (n = 2) с максимальной длиной очереди равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Для имитации СМО воспользуемся одним из методов статистического моделирования – имитационным моделированием. Будем использовать пошаговый подход. Суть этого подхода в том, что состояния системы рассматриваются в последующие моменты времени, шаг между которыми является достаточно малым, чтобы за его время произошло не более одного события.

Выберем шаг по времени (). Он должен быть много меньше среднего времени поступления заявки () и среднего времени ее обслуживания (), т.е.

Где (3.1.1)

Исходя из условия (3.1.1) определим шаг по времени .

Время поступления заявки в СМО и время ее обслуживания являются случайными величинами. Поэтому, при имитационном моделировании СМО их вычисление производится с помощью случайных чисел.

Рассмотрим поступление заявки в СМО. Вероятность того, что на интервале в СМО поступит заявка, равна: . Сгенерируем случайное число , и, если , то будем считать, что заявка на данном шаге в систему поступила, если , то не поступила.

В программе это осуществляет isRequested () . Интервал времени примем постоянным и равным 0,0001, тогда отношение будет равно 10000. Если заявка поступила, то она принимает значение «истина», в противном случае значение «ложь».

bool isRequested()

double r = R. NextDouble();

if (r < (timeStep * lambda))

Рассмотрим теперь обслуживание заявки в СМО. Время обслуживания заявки в системе определяется выражением , где – случайное число. В программе время обслуживания определяется с помощью функции GetServiceTime () .

double GetServiceTime()

double r = R. NextDouble();

return (-1/mu*Math. Log (1-r, Math.E));

Алгоритм метода имитационного моделирования можно сформулировать следующим образом. Время работы СМО (Т ) разбивается на шаги по времени dt , на каждом из них выполняется ряд действий. Вначале определяются состояния системы (занятость каналов, длина очереди), затем, с помощью функции isRequested () , определяется, поступила ли на данном шаге заявка или нет.

Если поступила, и, при этом имеются свободные каналы, то с помощью функции GetServiceTime () генерируем время обработки заявки и ставим ее на обслуживание. Если все каналы заняты, а длина очереди меньше 4, то помещаем заявку в очередь, если же длина очереди равна 4, то заявке будет отказано в обслуживании.

В случае, когда на данном шаге заявка не поступала, а канал обслуживания освободился, проверяем, есть ли очередь. Если есть, то из очереди заявку ставим на обслуживание в свободный канал. После проделанных операций время обслуживания для занятых каналов уменьшаем на величину шага dt .

По истечении времени Т , т.е., после моделирования работы СМО, вычисляются показатели эффективности работы системы и результаты выводятся на экран.

3.2 Блок-схема программы

Блок-схема программы, реализующей описанный алгоритм, приведена на рис. 5.

Рис. 5. Блок-схема программы

Распишем некоторые блоки более подробно.

Блок 1. Задание начальных значений параметров.

Random R; // Генератор случайных чисел

public uint maxQueueLength; // Максимальная длина очереди

public uint channelCount; // Число каналов в системе

public double lambda; // Интенсивность потока поступления заявок

public double mu; // Интенсивность потока обслуживания заявок

public double timeStep; // Шагповремени

public double timeOfFinishProcessingReq; // Время окончания обслуживания заявки во всех каналах

public double timeInQueue; // Время пребывания СМО в состояниях с очередью

public double processingTime; // Времяработысистемы

public double totalProcessingTime; // Суммарноевремяобслуживаниязаявок

public uint requestEntryCount; // Числопоступившихзаявок

public uint declinedRequestCount; // Числоотказанныхзаявок

public uint acceptedRequestCount; // Числообслуженныхзаявок

uint queueLength; // Длина очереди //

Тип, описывающий состояния СМО

enum SysCondition {S0, S1, S2, S3, S4, S5, S6};

SysCondition currentSystemCondition; // Текущее состояние системы

Задание состояний системы. Выделим у данной 2-х канальной системы 7 различных состояний: S 0 , S 1 . S 6 . СМО находится в состоянии S 0 , когда система свободна; S 1 – хотя бы один канал свободен; в состоянии S 2 , когда все каналы заняты, и есть место в очереди; в состоянии S 6 – все каналы заняты, и очередь достигла максимальной длины (queueLength = 4).

Определяем текущее состояние системы с помощью функции GetCondition()

SysCondition GetCondition()

SysCondition p_currentCondit = SysCondition.S0;

int busyChannelCount = 0;

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq[i] > 0)

busyChannelCount++;

p_currentCondit += k * (i + 1);

if (busyChannelCount > 1)

{p_currentCondit ++;}

return p_currentCondit + (int) QueueLength;

Изменение времени пребывания СМО в состояниях с длиной очереди 1, 2,3,4. Это реализуется следующим программным кодом:

if (queueLength > 0)

timeInQueue += timeStep;

if (queueLength > 1)

{timeInQueue += timeStep;}

Присутствует такая операция, как помещение заявки на обслуживание в свободный канал. Просматриваются, начиная с первого, все каналы, когда выполняется условие timeOfFinishProcessingReq [ i ] <= 0 (канал свободен), в него подается заявка, т.е. генерируется время окончания обслуживания заявки.

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] <= 0)

timeOfFinishProcessingReq [i] = GetServiceTime();

totalProcessingTime+= timeOfFinishProcessingReq [i];

Обслуживаниезаявоквканалахмоделируетсякодом:

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] > 0)

timeOfFinishProcessingReq [i] -= timeStep;

Алгоритм метода имитационного моделирования реализован на языке программирования C#.

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

Наиболее важными являются такие показатели, как:

1) Вероятность отказа в обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди). Для нахождения вероятности отказа разделим время пребывания СМО в состоянии с очередью 4 на общее время работы системы.

2) Относительная пропускная способность – это средняя доля поступивших заявок, обслуживаемых системой.

3) Абсолютная пропускная способность– это среднее число заявок, обслуживаемых в единицу времени.


4) Длина очереди, т.е. среднее число заявок в очереди. Длина очереди равна сумме произведений числа человек в очереди на вероятность соответствующего состояния. Вероятности состояний найдем как отношение времени нахождения СМО в этом состоянии к общему времени работы системы.

5) Среднее время пребывания заявки в очереди определяется формулой Литтла

6) Среднее число занятых каналовопределяется следующим образом:

7) Процент заявок, которым было отказано в обслуживании, находится по формуле

8) Процент обслуженных заявок находится по формуле


3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Т.к. показатели эффективности получаются в результате моделирования СМО в течение конечного времени, они содержат случайную компоненту. Поэтому, для получения более надежных результатов нужно провести их статистическую обработку. С этой целью оценим доверительный интервал для них по результатам 20 прогонов программы.

Величина попадает в доверительный интервал, если выполняется неравенство

, где

математическое ожидание (среднее значение), находится по формуле

Исправленная дисперсия,

,

N =20 – число прогонов,

– надежность. При и N =20 .

Результат работы программы представлен на рис. 6.


Рис. 6. Вид программы

Для удобства сравнения результатов, полученных различными методами моделирования, представим их в виде таблицы.

Таблица 2.

Показатели

эффективности СМО

Результаты

аналитического

моделирования

Результаты

имитационного моделирования (послед. шаг)

Результаты имитационного моделирования

Нижняя граница

доверительного

интервала

Верхняя граница

доверительного

интервала

Вероятность отказа 0,174698253017626

0,158495148639101

0,246483801571923
Относительная пропускная способность 0,825301746982374 0,753516198428077 0,841504851360899
Абсолютная пропускная способность 3,96144838551539 3,61687775245477 4,03922328653232
Средняя длина очереди 1,68655313447018 1,62655862750852 2,10148609204869
Среднее время пребывания заявки в очереди 0,4242558575 0,351365236347954 0,338866380730942 0,437809602510145
Среднее число занятых каналов 1,9807241927577 1,80843887622738 2,01961164326616

Из табл. 2 видно, что результаты, полученные при аналитическом моделировании СМО, попадают в доверительный интервал, полученный по результатам имитационного моделирования. Т.е., результаты, полученные разными методами, согласуются.

Заключение

В данной работе рассмотрены основные методы моделирования СМО и расчета показателей их эффективности.

Проведено моделирование двухканальной СМО с максимальной длиной очереди равной 4 с помощью уравнений Колмогорова, а также, найдены финальные вероятности состояний системы. Рассчитаны показатели ее эффективности.

Проведено имитационное моделирование работы такой СМО. На языке программирования C# составлена программа, имитирующая ее работу. Проведена серия расчетов, по результатам которых найдены значения показателей эффективности системы и выполнена их статистическая обработка.

Полученные при имитационном моделировании результаты согласуются с результатами аналитического моделирования.

Литература

1. Вентцель Е.С. Исследование операций. – М.: Дрофа, 2004. – 208 с.

2. Волков И.К., Загоруйко Е.А. Исследование операций. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2002. – 435 с.

3. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2000. – 447 с.

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 1979. – 400 с.

5. Ивницкий В.Л. Теория сетей массового обслуживания. – М.: Физматлит, 2004. – 772 с.

6. Исследование операций в экономике/ под ред. Н.Ш. Кремера. – М.: Юнити, 2004. – 407 с.

7. Таха Х.А. Введение в исследование операций. – М.: ИД «Вильямс», 2005. – 902 с.

8. Харин Ю.С., Малюгин В.И., Кирлица В.П. и др. Основы имитационного и статистического моделирования. – Минск: Дизайн ПРО, 1997. – 288 с.

1. Показатели эффективности использования СМО:

Абсолютная пропускная способность СМО – среднее число заявок, которое смо-

жет обслужить СМО в единицу времени.

Относительная пропускная способность СМО – отношение среднего числа заявок,

обслуживаемых СМО в единицу времени, к среднему числу поступивших за это же

время заявок.

Средняя продолжительность периода занятости СМО.

Коэффициент использования СМО – средняя доля времени, в течение которого

СМО занята обслуживанием заявок, и т.п.

2. Показатели качества обслуживания заявок:

Среднее время ожидания заявки в очереди.

Среднее время пребывания заявки в СМО.

Вероятность отказа заявке в обслуживании без ожидания.

Вероятность того, что вновь поступившая заявка немедленно будет принята к обслуживанию.

Закон распределения времени ожидания заявки в очереди.

Закон распределения времени пребывания заявки в СМО.

Среднее число заявок, находящихся в очереди.

Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары «СМО – клиент», где под «клиентом» понимают всю совокупность заявок или некий их источник. К числу таких показателей относится, например, средний доход, приносимый СМО в единицу времени

Классификация систем массового обслуживания

По числу каналов СМО:

одноканальные (когда имеется один канал обслуживания)

многоканальные , точнее n -канальные (когда количество каналов n ≥ 2).

По дисциплине обслуживания:

1. СМО с отказами , в которых заявка, поступившая на вход СМО в момент, когда все

каналы заняты, получает «отказ» и покидает СМО («пропадает»). Чтобы эта заявка все же

была обслужена, она должна снова поступить на вход СМО и рассматриваться при этом как заявка, поступившая впервые. Примером СМО с отказами может служить работа АТС: если набранный телефонный номер (заявка, поступившая на вход) занят, то заявка получает отказ, и, чтобы дозвониться по этому номеру, следует его набрать еще раз.

2. СМО с ожиданием (неограниченным ожиданием или очередью ). В таких системах

заявка, поступившая в момент занятости всех каналов, становится в очередь и ожидает освобождения канала, который примет ее к обслуживанию. Каждая заявка, поступившая на вход, в конце концов будет обслужена. Такие СМО часто встречаются в торговле, в сфере бытового и медицинского обслуживания, на предприятиях (например, обслуживание станков бригадой наладчиков).

3. СМО смешанного типа (с ограниченным ожиданием ). Это такие системы, в которых на пребывание заявки в очереди накладываются некоторые ограничения.



Эти ограничения могут накладываться на длину очереди , т.е. максимально возможное

число заявок, которые одновременно могут находиться в очереди. В качестве примера такой системы можно привести мастерскую по ремонту автомобилей, имеющую ограниченную по размерам стоянку для неисправных машин, ожидающих ремонта.

Ограничения ожидания могут касаться времени пребывания заявки в очереди , по исте-

чению которого она выходит из очереди и покидает систему).

В СМО с ожиданием и в СМО смешанного типа применяются различные схемы об-

служивания заявок из очереди. Обслуживание может быть упорядоченным , когда заявки из очереди обслуживаются в порядке их поступления в систему, и неупорядоченным , при котором заявки из очереди обслуживаются в случайном порядке. Иногда применяется обслуживание с приоритетом , когда некоторые заявки из очереди считаются приоритетными и поэтому обслуживаются в первую очередь.

По ограничению потока заявок:

замкнутые и открытые .

Если поток заявок ограничен и заявки, покинувшие систему, могут в нее возвращать-

ся, то СМО является замкнутой , в противном случае – открытой .

По количеству этапов обслуживания:

однофазные и многофазные

Если каналы СМО однородны, т.е. выполняют одну и ту же операцию обслужива-

ния, то такие СМО называются однофазными . Если каналы обслуживания расположены последовательно и они неоднородны, так как выполняют различные операции обслуживания (т.е. обслуживание состоит из нескольких последовательных этапов или фаз), то СМО называется многофазной . Примером работы многофазной СМО является обслуживание автомобилей на станции технического обслуживания (мойка, диагностирование и т.д.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовой проект

Сравнительный анализ эффективности простейши х систем массового обслуживания

Введение

массовый обслуживание производительность

В производственной деятельности и повседневной жизни часто возникают ситуации, когда появляется крайне важность в обслуживании требований или заявок поступающих в систему. Часто встречаются ситуации, в которых крайне важно пребывать в ситуации ожидания. Примерами тому может служить очередь покупателей у касс большого магазина, группа пассажирских самолетов, ожидающих разрешения на взлет в аэропорте, ряд вышедших из строя станков и механизмов, поставленных в очередь для починки в ремонтном цехе предприятия и т.д. Иногда системы обслуживания обладают ограниченными возможностями для удовлетворения спроса, и это приводит к образованию очередей. Как правило, ни время возникновения потребностей в обслуживании, ни продолжительность обслуживания заранее не известны. Избежать ситуации ожидания чаще всего не удается, но можно сократить время ожидания до какого-то терпимого предела.

Предметом теории массового обслуживания являются системы массового обслуживания (СМО). Задачами теории массового обслуживания являются анализ и исследование явлений, возникающих в системах обслуживания. Одна из базовых задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, к примеру, минимум времени ожидания, минимум средней длины очереди. Цель изучения режима функционирования обслуживающей системы в условиях, когда фактор случайности является существенным, контролировать некоторые количественные показатели функционирования системы массового обслуживания. Такими показателями, в частности являются среднее время пребывания клиента в очереди или доля времени, в течение которой обслуживающая система простаивает. При этом в первом случае мы оцениваем систему с позиции «клиента», тогда как во втором случае мы оцениваем степень загруженности обслуживающей системы. Путем варьирования операционными характеристиками обслуживающей системы может быть достигнут разумный компромисс между требованиями «клиентов» и мощностью обслуживающей системы.

1. Теоретическая часть

1.1 Классификация СМО

Системы массового обслуживания (СМО) классифицируются по разным признакам, что подробно изображено на рисунке 1.1.

Рисунок 1.1. Классификация СМО

По числу каналов обслуживания (n) СМО разделяются на одноканальные (n = 1) и многоканальные (n > 2). К одноканальным СМО в торговле можно отнести практически любой вариант локального обслуживания, например выполняемый одним продавцом, товароведом, экономистом, торговым аппаратом.

В зависимости от взаимного расположения каналов системы подразделяются на СМО с параллельными и с последовательными каналами. В СМО с параллельными каналами входной поток заявок на обслуживание является общим, и поэтому заявки в очереди могут обслуживаться любым свободным каналом. В таких СМО очередь на обслуживание можно рассматривать как общую.

В многоканальной СМО с последовательным расположением каналов каждый канал может рассматриваться как отдельная одноканальная СМО, или фаза обслуживания. Очевидно, выходной поток обслуженных заявок одной СМО является входным потоком для последующей СМО.

В зависимости от характеристик каналов обслуживания многоканальные СМО подразделяются на СМО с однородными и неоднородными каналами. Отличие состоит в том, что в СМО с однородными каналами заявка может обслуживаться любым свободным каналом, а в СМО с неоднородными каналами отдельные заявки обслуживаются только специально для этой цели предназначенными каналами, например кассы для оплаты одного-двух предметов в универсаме.

В зависимости от возможности образования очереди СМО подразделяются на два основных типа: СМО с отказами обслуживания и СМО с ожиданием (очередью) обслуживания.

В СМО с отказами возможен отказ в обслуживании, если все каналы уже заняты обслуживанием, а образовывать очередь и ожидать обслуживания нельзя. Примером такой СМО является стол заказов в магазине, в котором прием заказов осуществляется по телефону.

В СМО с ожиданием, если заявка находит все каналы обслуживания занятым, то она ожидает, пока не освободится хотя бы один из каналов.

СМО с ожиданием подразделяются на СМО с неограниченным ожиданием или с неограниченной очередью lоч и временем ожидания Точ и СМО с ограниченным ожиданием, в которых накладываются ограничения или на максимально возможную длину очереди (max lоч = m), или на максимально возможное время пребывания заявки в очереди (max Точ = Тогр), или на время работы системы.

В зависимости от организации потока заявок СМО подразделяются на разомкнутые и замкнутые.

В разомкнутых СМО выходной поток обслуженных заявок не связан с входным потоком заявок на обслуживание. В замкнутых СМО обслуженные заявки после некоторой временной задержки Тз снова поступают на вход СМО и источник заявок входит в состав СМО. В замкнутой СМО циркулирует одно и то же конечное число потенциальных заявок, например, посуда в столовой - через торговый зал, мойку и раздачу. Пока потенциальная заявка циркулирует и не преобразовалась на входе СМО в заявку на обслуживание, считается, что она находится в линии задержки.

Типовые варианты СМО определяются также и установленной дисциплиной очереди, которая зависит от преимущества в обслуживании, т.е. приоритета. Приоритет отбора заявок на обслуживание может быть следующий: первый пришел - первый обслужен; последний пришел - первый обслужен; случайный отбор. Для СМО с ожиданием и обслуживанием по приоритету возможны следующие виды: абсолютный приоритет, например для сотрудников контрольно-ревизионного управления, министра; относительный приоритет, например для директора торга на подведомственных ему предприятиях; специальные правила приоритета, когда обслуживание заявок оговорено в соответствующих документах. Существуют и другие типы СМО: с поступлением групповых заявок, с каналами разной производительности, со смешанным потоком заявок.

Совокупности СМО разных типов, объединенные последовательно и параллельно, образуют более сложные структуры СМО: секции, отделы магазина, универсама, торговой организации и т.п. Такое моделирование позволяет выявить существенные связи в торговле, применить методы и модели теории массового обслуживания для их описания, оценить эффективность обслуживания и разработать рекомендации по его совершенствованию.

1.2 Примеры СМО

Примерами СМО могут служить:

­ телефонные станции;

­ ремонтные мастерские;

­ билетные кассы;

­ справочные бюро;

­ магазины;

­ парикмахерские.

Как своеобразные системы массового обслуживания могут рассматриваться:

­ информационно-вычислительные сети;

­ операционные системы электронных вычислительных машин;

­ системы сбора и обработки информации;

­ автоматизированные производственные цехи, поточные линии;

­ транспортные системы;

­ системы противовоздушной обороны.

Близкими к задачам теории массового обслуживания являются многие задачи, возникающие при анализе надежности технических устройств.

Случайный характер, как потока заявок, так и длительности обслуживания приводит к тому, что в СМО будет происходить какой-то случайный процесс. Чтобы дать рекомендации по рациональной организации этого процесса и предъявить разумные требования к СМО, необходимо изучить случайный процесс, протекающий в системе, описать его математически. Этим и занимается теория массового обслуживания.

Заметим, что область применения математических методов теории массового обслуживания непрерывно расширяется и все больше выходит за пределы задач, связанных с обслуживающими организациями в буквальном смысле слова.

Число моделей систем (сетей) обслуживания, используемых на практике и изучающихся в теории, очень и очень велико. Даже для того, чтобы описать схематично основные их типы, требуется не один десяток страниц. Мы рассмотрим только системы с очередью. При этом будем предполагать, что эти системы являются открытыми для вызовов, т.е., заявки, поступают в систему извне (в некотором входном потоке), каждому из них требуется конечное число обслуживаний, по окончании последнего из которых заявка навсегда покидает систему; а дисциплины обслуживания таковы, что в любой момент времени каждый прибор может обслуживать не более одного вызова (другими словами, не допускается параллельного обслуживания двух и более заявок одним прибором).

Во всех случаях мы обсудим условия, которые гарантируют стабильную работу системы.

2 . Расчётная часть

2.1 Первый этап. Система с отказами

На данном этапе проведём минимизацию средней стоимости обслуживания одной заявки в единицу времени для системы с отказами. Для этого определим число каналов обслуживания, обеспечивающее в системе с отказами наименьшее значение параметра - средней стоимости обслуживания одной заявки в единицу времени.

В соответствии с вариантом задания определены следующие параметры системы:

­ интенсивность входного потока (среднее число заявок, поступающих в систему в единицу времени) 1/ед. времени.

­ среднее время обслуживания одной заявки ед. времени;

­ стоимость эксплуатации одного канала ед. стоим./канал;

­ стоимость простоя одного канала ед. стоим./канал;

­ стоимость эксплуатации одного места в очереди

­ ед. стоим./заявка в очереди;

­ стоимость убытков, связанных с уходом заявки из системы, получившей отказ в обслуживании ед. стоим.ед. врем.

Задавая значения (число каналов обслуживания) от единицы до шести, вычислим финальные вероятности и в соответствии с ними показатели эффективности системы. Результаты вычислений приведены в Таблица 2.1 и Таблица 2.2, а также показаны на графиках функций, приведённых на Рисунок 2.1.

Выполним расчеты по формулам 2.1.

Вероятность того, что занят один (в данном случае все) канал равна:

Так как канал всего один, то.

1/ед. времени.

1/ед. времени.

Коэффициент загрузки равен:

ед. времени.

Так как анализируемая система с отказами не имеет очереди, то среднее число заявок, находящихся в очереди равно нулю при любом числе каналов обслуживания.

Вычислим показатели эффективности для системы с отказами при.

Вероятность того, что все каналы свободны равна:

Вероятность того, что занято два (в данном случае все) канала равна:

Так как канала всего два, то.

Вероятность обслуживания заявки равна:

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

Среднее число свободных каналов равно:

Коэффициент загрузки равен:

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

Средняя стоимость обслуживания одной заявки в единицу времени равна:

Вычислим показатели эффективности для системы с отказами при.

Вероятность того, что все каналы свободны равна:

Вероятность того, что занят один канал равна:

Вероятность того, что занято три (в данном случае все) канала равна:

Так как канала всего три, то.

Вероятность обслуживания заявки равна:

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

Среднее число свободных каналов равно:

Коэффициент загрузки равен:

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

Средняя стоимость обслуживания одной заявки в единицу времени равна:

Вычислим показатели эффективности для системы с отказами при.

Вероятность того, что все каналы свободны равна:

Вероятность того, что занят один канал равна:

Вероятность того, что занято два канала равна:

Вероятность того, что занято три канала равна:

Вероятность того, что занято четыре (в данном случае все) канала равна:

Так как канала всего четыре, то.

Вероятность обслуживания заявки равна:

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

Среднее число свободных каналов равно:

Коэффициент загрузки равен:

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

Средняя стоимость обслуживания одной заявки в единицу времени равна:

Для и вычисления выполняются аналогично, поэтому подробного приводить не требуется. Результаты расчётов также внесены в Таблица 2.1 и Таблица 2.2. и показаны на Рисунок 2.1.

Таблица 2.1. Результаты расчётов для СМО с отказами

Система с отказами 1/ед. времени, ед. времени

Результирующие показатели

Таблица 2.2. Вспомогательные расчёты для СМО с отказами

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Полученные расчёты позволяют сделать вывод, что наиболее оптимальным количеством каналов системы с отказами будет, так как при этом обеспечивается минимальное значение средней стоимости обслуживания одной заявки в единицу времени, экономического показателя, характеризующего систему как с точки зрения потребителя, так и с точки зрения её эксплуатационных свойств.

Рисунок 2.1. Графики результирующих показателей СМО с отказами

Значения основных показателей эффективности оптимальной СМО с отказами:

ед. времени.

Допустимое для смешенной СМО значение времени пребывания заявки в системе вычисляется по формуле 2.2.

ед. времени.

2.2 Второй этап. Смешанная система

На данном этапе изучается, соответствующая заданию, система массового обслуживания с ограничением на время пребывания в очереди. Основной задачей этого этапа является решение вопроса о возможности с введением очереди обеспечить уменьшение значения оптимального для рассматриваемой системы значения экономического показателя С и улучшить другие показатели эффективности изучаемой системы.

Задавая значения параметра (среднего времени пребывания заявки в системе), вычислим те же показатели эффективности, что и для системы с отказами. Результаты вычислений приведены в Таблица 2.3 и Таблица 2.4, а также показаны на графиках функций, приведённых на Рисунок 2.2.

Для вычисления вероятностей и основных показателей эффективности используем следующие формулы:

,

,

,

,

,

,

, . 2.3

Выполним расчеты по формулам 2.3.

Значение показателя одинаково для всех.

.

.

Вероятность того, что все каналы свободны, вычисляется по формулам:

,

, . 2.4

Вычислим несколько первых членов ряда, использую формулы 2.3:

.

.

.

.

.

Выполним остальные расчеты по формулам 2.2.

Вычислим финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

.

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Так как полученная средняя стоимость обслуживания одной заявки меньше аналогичного параметра оптимальной СМО с отказами

, следует увеличить.

Выполним расчёт показателей эффективности СМО с ограничением на время пребывания в очереди ед. времени.

.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Для расчетов также используем формулы 2.2 и формулы 2.3.

.

.

.

.

.

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

Вычислим среднее время пребывания заявки в системе, которое должно удовлетворять условию ед. времени.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Как видно из расчётов, увеличение приводит к уменьшению средней стоимости обслуживания одной заявки. Аналогично выполним расчёты с увеличением среднего времени пребывания заявки в очереди, результаты внесём в Таблица 2.3 и Таблица 2.4, а также отобразим на Рисунок 2.2.

Таблица 2.3. Результаты расчётов для смешанной системы

Система с ограничением на время пребывания в очереди

1/ед. врем., ед. врем.

Результирующие показатели

Данные системы с отказами

Таблица 2.4. Вспомогательные расчёты для смешанной системы

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Данные системы с отказами

Данные системы с ограничением на время пребывания в очереди

Полученные расчёты позволяют сделать вывод, что наиболее оптимальным средним временем пребывания заявки в очереди для системы с ограничением на время пребывания в очереди следует принять, так как при этом наименьшая средняя стоимость обслуживания одной заявки, а среднее время пребывания заявки в системе не превышает допустимого, то есть условие выполняется.

Рисунок 2.2. Графики результирующих показателей смешанной системы

Значения основных показателей эффективности оптимальной СМО с ограничением на время пребывания заявки в очереди:

ед. времени.

ед. времени.

Сравнивания показатели эффективности оптимальной системы с отказами и изучаемой оптимальной смешанной системы с ограничением на время пребывания в очереди можно заметить, кроме уменьшения средней стоимости обслуживания одной заявки, повышение загруженности системы и вероятности обслуживания заявки, что позволяет оценить исследуемую системы как более эффективную. Незначительное увеличение времени пребывания заявки в системе не влияет на оценку системы, так как ожидаемо при введении очереди.

2.3 Третий этап. Влияние производительности каналов

На этом этапе исследуем влияние производительности каналов обслуживания на эффективность системы. Производительность канала обслуживания определяется значением среднего времени обслуживания одной заявки. В качестве предмета исследования примем смешанную систему, признанную оптимальной на предыдущем этапе. Показатели эффективности этой первоначальной системы сравним с аналогичными показателями двух вариантов этой системы.

Вариант А. Система с уменьшенной производительностью каналов обслуживания за счет увеличения в два раза среднего времени обслуживания и с уменьшенными затратами, связанными с эксплуатацией и простоем оборудования.

, .

Вариант Б. Система с увеличенной производительностью каналов обслуживания за счет уменьшения в два раза среднего времени обслуживания и с увеличенными затратами, связанными с эксплуатацией и простоем оборудования.

, .

Результаты вычислений приведены в Таблица 2.5 и Таблица 2.6.

Выполним расчёт показателей эффективности СМО с уменьшенной производительностью каналов обслуживания.

ед. времени.

.

.

.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Выполним расчёт показателей эффективности СМО с увеличенной производительностью каналов обслуживания.

ед. времени.

.

.

.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда:

.

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

канала.

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

Вычислим среднее время пребывания заявки в системе.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Таблица 2.5. Результаты расчётов третьего этапа

Заданная смешанная система

1/ед. врем., ед. врем.

Результирующие

показатели

Первонач. вариант

Вариант А

Вариант Б

Таблица 2.6. Вспомогательные расчёты третьего этапа

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Первонач. вариант

Вариант А

Вариант Б

Полученные результаты показывают не целесообразность увеличивать или уменьшать производительность каналов обслуживания. Так как при уменьшении производительности каналов обслуживания возрастает среднее время пребывания заявки в системе, хотя загруженность системы близка к максимальной. При увеличении производительности большая часть каналов обслуживания простаивает, но с точки зрения потребителя система эффективна, так как вероятность обслуживания близка к единице, а время пребывания заявки в системе невелико. Данный расчёт демонстрирует два варианта системы, первый из которых эффективен с точки зрения эксплуатационных свойств и не эффективен с точки зрения потребителя, а второй - наоборот.

Заключение

В ходе выполнения курсового проекта были изучены и рассмотрены система массового обслуживания с отказами и смешанная система массового обслуживания с ограничением на время пребывания в очереди, а также исследовано влияние производительности каналов обслуживания на эффективность системы, выбранной оптимальной.

Сравнивая оптимальные СМО с отказами и смешанную систему по параметрам эффективности, наилучшей следует признать смешанную систему. Так как средняя стоимость обслуживания одной заявки в смешанной системе меньше чем аналогичный параметр в СМО с отказами на 9%.

Анализируя эффективность с точки зрения эксплуатационных свойств системы, смешанная система показывает лучшие результаты по сравнению с СМО с отказами. Коэффициент загрузки и абсолютная пропускная способность смешанной системы больше на 10%, чем аналогичные параметры у СМО с отказами. С точки зрения потребителя вывод не так очевиден. Вероятность обслуживания смешанной системы выше почти на 10%, что говорит о большей эффективности смешанной системы по сравнению с СМО с отказами. Но также наблюдается увеличение времени пребывания заявки в системе на 20%, что характеризует СМО с отказами как более эффективную по данному параметру.

В результате исследований наиболее эффективной признана оптимальная смешанная система. Данная система имеет следующие преимущества перед СМО с отказами:

­ меньше затраты на обслуживание одной заявки;

­ меньше простоя каналов обслуживания, ввиду большей загруженности;

­ большая доходность, так как пропускная способность системы выше;

­ есть возможность выдержать неравномерность интенсивности поступающих заявок (увеличение нагрузки), ввиду наличия очереди.

Исследования влияния производительности каналов обслуживания на эффективность смешанной системы массового обслуживания с ограничением на время пребывания в очереди позволяют сделать вывод, что наилучшим вариантом будет исходная оптимальная смешанная система. Так как при уменьшении производительности каналов обслуживания система очень сильно «проседает» с точки зрения потребителя. Время пребывания заявки в системе увеличивается в 3,6 раза! А при увеличении производительности каналов обслуживания система настолько легко справляется с нагрузкой, что 75% времени будет простаивать, что является другой, экономически не эффективной, крайностью.

Учитывая вышеизложенное, оптимальная смешанная система является наилучшим выбором, так как демонстрирует баланс показателей эффективности с точки зрения потребителя и эксплуатационных свойств, имея при этом наилучшие экономические показатели.

Библиографи я

1 Дворецкий С.И. Моделирование систем: учебник для студ. высш. учеб. заведений / М.: Издательский центр «Академия». 2009.

2 Лабскер Л.Г. Теория массового обслуживания в экономической сфере: Учеб. пособие для вузов / М.: ЮНИТИ. 1998.

3 Самусевич Г.А. Теория массового обслуживания. Простейшие системы массового обслуживания. Методические указания по выполнению курсового проекта. / Е.: УрТИСИ СибГУТИ. 2015.

Размещено на Allbest.ru

Подобные документы

    Истоки и история становления экономического анализа. Экономический анализ в условиях царской России, в послеоктябрьский период и в период перехода к рыночным отношениям. Теория массового обслуживания, ее применение и использование при принятии решений.

    контрольная работа , добавлен 03.11.2010

    Экономическая система в разных научных школах. Сравнительное исследование механизма функционирования разных экономических систем. Соотношение плана и рынка (аллокация ресурсов). Виды систем: современная, традиционная, плановая и смешанная (гибридная).

    курсовая работа , добавлен 25.12.2014

    Исследование особенностей повременной и сдельной заработной платы. Описание аккордной, контрактной и бестарифной систем оплаты труда. Бригадная форма организации труда. Анализ факторов, влияющих на заработную плату. Обзор причин неравенства в доходах.

    курсовая работа , добавлен 28.10.2013

    Методология сравнительного исследования экономических систем. Развитие взглядов на доиндустриальную экономическую систему. Рыночная экономика: концептуальная схема построения и реальная действительность. Модели смешанной экономики в развивающихся странах.

    книга , добавлен 27.12.2009

    Сущность массового типа организации производства и область его применения, основные показатели. Главные особенности применения массового типа организации производства на конкретном предприятии. Совершенствование управления массовым типом производства.

    курсовая работа , добавлен 04.04.2014

    Подходы к изучению экономики и экономического процесса. Хозяйственный механизм как часть экономической системы. Виды экономических систем. Капитализм, социализм и смешанная экономика в теории и на практике. Национальные модели экономических систем.

    курсовая работа , добавлен 14.04.2013

    Понятие экономических систем и подходы к их классификации. Основные модели развитых стран в рамках экономических систем. Основные черты и особенности шведской, американской, германской, японской, китайской и российской моделей переходной экономики.

    курсовая работа , добавлен 11.03.2010

    Сущность портфельного, бюджетного, проектного подходов к оценки проектов по внедрению информационных технологий в компании. Описание традиционных финансовых и вероятностных методик определения эффективности применения корпоративных информационных систем.

    реферат , добавлен 06.12.2010

    Понятие производственной функции и изокванты. Классификация малоэластичных, среднеэластичных и высокоэластичных товаров. Определение и использование коэффициентов прямых затрат. Использование метода теории игр в торговле. Системы массового обслуживания.

    практическая работа , добавлен 04.03.2010

    Понятие и классификация экономических систем, их разновидности и сравнительное описание. Сущность и главные условия существования рынка, закономерности и направления его развития. Понятие субъекта и объекта рыночной экономики, принципы управления.

2 - очередь - требования, ожидающие обслуживания.

Очередь оценивается средней длиной г - числом объектов или клиентов, ожи­дающих обслуживания.

3 - обслуживающие аппараты (каналы обслуживания) - совокупность рабочих мест, исполнителей, оборудования, осуществляющих обслуживание требований по определенной технологии.

4 - выходящий поток требований со"(г) - поток требований, прошедших СМО. В общем случае выходящий поток может состоять из требований обслуженных и необслуженных. Пример необслуженных требований: отсутствие нужной детали для автомобиля, находящегося в ремонте.

5 - замыкание (возможное) СМО - состояние системы, при котором входящий поток требований зависит от выходящего.

На автомобильном транспорте после обслуживания требований (ТО, ремонт) автомобиль должен быть технически исправным.

Системы массового обслуживания классифицируются следующим образом.

1. По ограничениям на длину очереди:

СМО с потерями - требование покидает СМО необслуженным, если в момент его поступления все каналы заняты;

СМО без потерь - требование занимает очередь, даже если все каналы заняты;

СМО с ограничениями по длине очереди т или времени ожидания: если су­ществует ограничение на очередь, то вновь поступившее (/?/ + 1)-е требование выбывает из системы необслуженным (например, ограниченная емкость на­копительной площадки перед АЗС).

2. По количеству каналов обслуживания п:

Одноканальные: п = 1;

Многоканальные п ^ 2.

3. По типу обслуживающих каналов:

Однотипные (универсальные);

Разнотипные (специализированные).

4. По порядку обслуживания:

Однофазовые - обслуживание производится на одном аппарате (посту);

Многофазовые - требования последовательно проходит несколько аппаратов обслуживания (например, поточные линии ТО; конвейерная сборка авто­мобиля; линия внешнего ухода: уборка -> мойка -> обсушка -> полировка).

5. По приоритетности обслуживания:

Без приоритета - требования обслуживаются в порядке их поступления на
СМО;



С приоритетом - требования обслуживаются в зависимости от присвоенного
им при поступлении ранга приоритетности (например, заправка автомобилей
скорой помощи на АЗС; первоочередной ремонт на АТП автомобилей,
приносящих наибольшую прибыль на перевозках).

6. По величине входящего потока требований:

С неограниченным входящим потоком;

С ограниченным входящим потоком (например, в случае предварительной за­писи на определенные виды работ и услуг).

7. По структуре С МО:

Замкнутые - входящий поток требований при прочих равных условиях зависит от числа ранее обслуженных требований (комплексное АТП, обслуживающее только свои автомобили (5 на рис. 6.6));

Открытые - входящий поток требований не зависит от числа ранее обслу­женных: АЗС общего пользования, магазин по продаже запасных частей.

8. По взаимосвязи обслуживающих аппаратов:

С взаимопомощью - пропускная способность аппаратов непостоянна и зависит от занятости других аппаратов: бригадное обслуживание нескольких постов СТО; использование "скользящих" рабочих;

Без взаимопомощи - пропускная способность аппарата не зависит от работы других аппаратов СМО.

Применительно к технической эксплуатации автомобилей находят распростра­нение замкнутые и открытые, одно- и многоканальные СМО, с однотипными или специализированными обслуживающими аппаратами, с одно- или многофазовым обслуживанием, без потерь или с ограничением на длину очереди или на время нахождения в ней.

В качестве показателей эффективности работы СМО используют приведен­ные ниже параметры.

Интенсивность обслуживания

Относительная пропускная способность определяет долю обслуженных требований от общего их количества.

Вероятность того, что все посты свободны Р {) , характеризует такое состоя­ние системы, при котором все объекты исправны и не требуют проведения техни­ческих воздействий, т.е. требования отсутствуют.

Вероятность отказа в обслуживании Р огк имеет смысл для СМО с потерями и с ограничением по длине очереди или времени нахождения в ней. Она показывает долю "потерянных" для системы требований.

Вероятность образования очереди Р оц определяет такое состояние системы, при котором все обслуживающие аппараты заняты, и следующее требование "встает" в очередь с числом ожидающих требований г.

Зависимости для определения названных параметров функционирования СМО определяются ее структурой.

Среднее время нахождения в очереди

Из-за случайности входящего потока требований и продолжительности их выполнения всегда имеется какое-то среднее число простаивающих автомобилей. Поэтому требуется так распределить число обслуживающих аппаратов (постов, рабочих мест, исполнителей) по различным подсистемам, чтобы И - min. Этот класс задач имеет дело с дискретным изменением параметров, так как число аппаратов может изменяться только дискретным образом. Поэтому при анализе системы обеспечения работоспособности автомобилей используются методы исследования операций, теории массового обслуживания, линейного, нелинейного и динамического программирования и имитационного моделирования.

Пример. На автотранспортном предприятии имеется один пост диагностирования (п = 1). В данном случае длина очереди практически неограниченна. Определить параметры эффек­тивности работы диагностического поста, если стоимость простоя автомобилей в очереди составляет С\ = 20 р.е. (расчетных единиц) в смену, а стоимость простоя постов С 2 = 15 р.е. Остальные исходные данные те же, что и для предыдущего примера.

Пример. На том же автотранспортном предприятии число постов диагностирования увеличено до двух (п = 2), т.е. создана многоканальная система. Так как для создания второго поста необходимы капиталовложения (площади, оборудование и т.д.), то цена простоя средств обслуживания увеличивается до С2 = 22р.е. Определить параметры эффективности работы системы диагностирования. Остальные исходные данные те же, что для пре­дыдущего примера.

Интенсивность диагностирования и приведенная плотность потока остаются теми же:

}

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!