Служба защиты прав потребителей

Миграционные пути птиц, как птицы ориентируются в пространстве. Как птицы ориентируются в полете? Как птицы ориентируются по звездам

Относительно небольшое число видов и особей гусеобразных, поганок, голенастых, хищников, куликов, чаек, воробьиных зимуют в южных районах бывшего СССР по берегам Черного моря, в Закавказье, на юге Каспия, в некоторых районах Средней Азии. Подавляющее большинство видов и особей наших птиц зимует за пределами страны на Британских островах и в Южной Европе, в Средиземноморье, во многих районах Африки и Азии. Например, в Южной Африке зимуют многие мелкие птицы из европейской части бывшего СССР (пеночки, камышовки, ласточки и др.), пролетающие от мест зимовок до 9-10 тыс. км. Пролетные пути некоторых видов еще длиннее. Гнездящиеся по побережьям Баренцева моря полярные крачки - Sterna paradisea зимуют у побережья Австралии, пролетая лишь в одну сторону до 16-18 тыс. км. Почти такой же пролетный путь у гнездящихся в тундрах Сибири бурокрылых ржанок - Charadrius dominica, зимующих в Новой Зеландии, и у колючехвостых стрижей - Hirundapus caudacutus, из Восточной Сибири отлетающих в Австралию и Тасманию (12-14 тыс. км); часть пути они пролетают над морем.

Во время миграций птицы летят с обычными скоростями, чередуя перелет с остановками для отдыха и кормежки. Осенние миграции обычно совершаются с меньшей скоростью, чем весенние. Мелкие воробьиные птицы при миграциях за сутки перемещаются в среднем на 50-100 км, утки - на 100-500 км и т. п. Таким образом, в среднем за сутки птицы тратят на перелет относительно небольшое время, иногда всего лишь 1-2 ч. Однако некоторые даже мелкие наземные птицы, например американские древесные славки - Dendroica, мигрируя над океаном, способны пролетать без остановки 3-4 тыс. км. за 60-70 ч непрерывного полета. Но такие напряженные миграции выявлены лишь у небольшого числа видов.

Высота полета зависит от многих факторов: вида птицы и пелетных возможностей, погоды, скорости воздушных потоков на разной высоте и т. п. Наблюдениями с самолетов и с помощью радаров было установлено, что миграции большинства видов проходят на высоте 450-750 м; отдельные стаи могут пролетать и совсем низко над землей. Значительно реже пролетных журавлей, гусей, куликов, голубей отмечали на высотах до 1,5 км и выше. В горах стаи летящих куликов, гусей, журавлей отмечали даже на высоте 6- 9 км над уровнем моря (на 9-м километре содержание кислорода на 70% меньше, чем на уровне моря). Водные птицы (гагары, поганки, чистиковые) часть пролетного пути проплывают, а коростель проходит пешком. Многие виды птиц, обычно активные только в дневное время, мигрируют ночью, а днем кормятся (многие воробьиные, кулики и др.), другие и в период миграции сохраняют обычную суточную ритмику активности.

У перелетных птиц в период подготовки к миграциям изменяется характер обмена веществ, приводящий при усиленном питании к накоплению значительных жировых запасов. При окислении жиры выделяют почти вдвое больше энергии, чем углеводы и белки. Резервный жир по мере надобности поступает в кровь и доставляется в работающие мышцы. При окислении жиров образуется вода, чем компенсируется потеря влаги при дыхании. Особенно велики запасы жира у видов, вынужденных во время миграции длительное время лететь без остановок. У уже упоминавшихся американских древесных славок перед полетом над морем запасы жира могут составлять до 30-35% их массы. После такого -броска- птицы усиленно кормятся, восстанавливая энергетические резервы, и опять продолжают перелет.

Изменение характера обмена, подготавливающего организм к перелету или к условиям зимовки, обеспечивается сочетанием внутренней годовой ритмики физиологических процессов и сезонных изменений условий жизни, в первую очередь изменением длины светового дня (удлинением - весной и укорочением - в конце лета); вероятно, определенное значение имеет и сезонное изменение кормов. У накопивших энергетические ресурсы птиц под влиянием внешних стимулов (изменение длины дня, погода, недостаток кормов) наступает так называемое -перелетное беспокойство-, когда поведение птицы резко меняется и возникает стремление к миграции.

У подавляющего большинства кочующих и перелетных птиц отчетливо выражен гнездовой консерватизм . Он проявляется в том, что размножавшиеся птицы на следующий год возвращаются с зимовки на место предыдущего гнездования и либо занимают старое гнездо, либо поблизости строят новое. Молодые, достигшие половой зрелости птицы возвращаются на свою родину, но чаще поселяются на каком-то расстоянии (сотни метров - десятки километров) от того места, где они вылупились ( рис. 63). Менее отчетливо выраженный у молодых птиц гнездовой консерватизм позволяет виду заселять новые, пригодные для него территории и, обеспечивая перемешивание популяции, предотвращает инбридинг (близкородственное скрещивание). Гнездовой же консерватизм взрослых птиц позволяет им гнездиться в хорошо знакомом районе, что облегчает и поиски пищи, и спасение от врагов. Существует и постоянство мест зимовок.

Как птицы ориентируются во время миграций, как выбирают направление перелета, попадая в определенный район на зимовку и возвращаясь за тысячи километров на место гнездования- Несмотря на разнообразные исследования, ответа на этот вопрос пока нет. Очевидно, у перелетных птиц есть врожденный миграционный инстинкт, позволяющий им выбирать нужное общее направление миграции. Однако этот врожденный инстинкт под влиянием условий среды, видимо, может быстро изменяться.

Яйца оседлых английских крякв были инкубированы в Финляндии. Выросшие молодые кряквы, как и местные утки, осенью улетели на зимовку, а следующей весной значительная их часть (36 из 66) вернулась в Финляндию в район выпуска и там загнездилась. В Англии ни одна из этих птиц не была обнаружена. Черные казарки перелетные. Их яйца инкубировались в Англии, и молодые птицы осенью вели себя на новом месте как оседлые птицы. Таким образом, объяснить и само стремление к миграции, и ориентировку во время перелета только врожденными рефлексами пока нельзя. Экспериментальные исследования и полевые наблюдения свидетельствуют, что мигрирующие птицы способны к астронавигации: к выбору нужного направления перелета по положению солнца, луны и звезд. При пасмурной погоде или при изменении картины звездного неба при опытах в планетарии способность к ориентации заметно ухудшалась.

Вероятно, никакие миграции животных не вызывают у человека такого восхищения, как перелеты птиц. Ежегодно весной и осенью можно видеть, как перелетные птицы собираются в стаи, готовясь в дальнюю дорогу. Вскоре после этого они отправляются в путь, пролетая огромные расстояния до мест гнездовий или зимовок. Долгие годы ученые ничего не знали о маршрутах перелетов птиц. И только с введением метода кольцевания орнитологам удалось собрать сведения о маршрутах этих путешественников.

При кольцевании птице надевают на лапку алюминиевый браслетик. Молодых, еще не летающих птенцов метят, вынимая их на несколько секупд из гнезда, авзрослых - когда их удается поймать в силки. На каждом кольце выбит номер и шифр государственного учреждения, которое ведет картотеку всех птиц, окольцованных в данной стране. При обнаружении окольцованной птицы о месте ее поимки сообщают в это учреждение. Во время перелетов птицы придерживаются в основном некоторых определенных (или главных) трасс, называемых пролетными путями. Орнитологи США различают семь основных пролетных путей: вдоль атлантического побережья, над Аппалачами, вдоль Миссисипи, над Великими Равнинами, над горами Сьерра-Невада, вдоль тихоокеанского побережья и, наконец, поперек страны.

Хотя очень многие птицы летят по всем этим трассам, отдельные виды обычно выбирают определенные излюбленные пути. Некоторые виды, например, летят вдоль атлантического побережья, держа курс очень далеко - на Аргентину. Ширококрылые канюки, используя мощные воздушные течения над Аппалачами, почти без всяких усилий достигают нужных им мест, тогда как многотысячные стаи голубых гусей собираются в долине Миссисипи и зимуют в Луизиане. Другие птицы, живущие летом в низменных местах Великих Равнин и Канады, пересекают всю Северную Америку, направляясь на зимовку на юговосточное побережье. Хорошие летуны путешествуют днем, а большинство мелких птиц и некоторые осторожные крупные птицы летят ночью, а днем кормятся и отдыхают. Птицы обычно летят на высоте около 1000 метров. Многие птицы пролетают без отдыха огромные расстояния, чтобы скорее достигнуть своей цели. По имеющимся данным, золотистая ржанка может без посадки пересечь Атлантический океан - от Новой Шотландии до Южной Америки, что составляет около 4 тысяч километров. Чемпионом по дальности перелетов является полярная крачка: она гнездится, в Арктике, а зимует в Антарктике, пролетая ежегодно более чем по 40 тысяч километров.

Благодаря методу кольцевания удалось выяснить, что птицы данного вида из года в год летят по одним и тем же трассам. Есть птицы, которые каждую весну, пролетев тысячи километров, возвращаются на тот же самый куст или дерево, откуда они отправились на зимовку. Как объяснить столь замечательную способность птиц к навигации? Врожденное ли это свойство или приобретенное? У тех птиц, которые летят стаями, молодые особи, возможно, узнают дорогу от старших: они, так сказать, следуют за толпой. В пользу этого предположения говорит V-образный строй стан у таких птиц, как канадские казарки, у которых, по-видимому, дорогу указывает наиболее опытпып вожак. Однако у некоторых видов молодые птицы отправляются в путь значительно раньше стариков, а иногда стаи молодых даже летят по новым трассам.

Создается впечатление, что молодые птицы даже без руководства со стороны родителей от рождения знают, куда им надо лететь на зимовку. Однажды в городе Альберта (Канада) выпустили группу молодых окольцованных ворон, причем это было намеренно сделано спустя довольно много времени после того, как последняя ворона улетела из Канады к местам своей обычной зимовки в штатах Канзас и Оклахома (США). А впоследствии некоторые из этих окольцованных птиц были выловлены в различных пунктах, расположенных вдоль того пути, по которому обычно мигрируют вороны. По-видимому, при этом первом и к тому же самостоятельном перелете птицы руководствовались каким-то врожденным чувством направления. Возможно, что способность правильно определить общее направление полета при миграциях представляет собой врожденное свойство, однако, вероятно, необходим опыт - этот старый и мудрый учитель, чтобы общее направление превратилось в некий строго определенный маршрут.

Незадолго до начала второй мировой войны профессор Дрост обнаружил, что если каким-то образом «столкнуть» молодых птиц с обычного пути миграции они летят в направлении, параллельном этому пути. Если же подобный опыт проделывали с птицами постарше, то они стремились вновь вернуться па уже оевоенную ими в прошлом трассу. Осенью ястреб перепелятник летит из Скандинавии через Северное море и многочисленные мелкие водные преграды на юго-запад. Птицы пролетают через Северную Европу и заканчивают свое путешествие в Голландии, Бельгии или на севере Франции. Дрост отловил по нескольку молодых и взрослых перепелятников на одном из островов у северного побережья Европы, перевез их в Гиммель (Польша) и выпустил. Оказавшись на свободе, молодые ястреба продолжали лететь на юго-запад, как если бы с ними ничего не произошло; позднее все они были обнаружены в пределах узкой полосы, расположенной параллельно обычному маршруту скандинавских перепелятников, причем некоторые птицы оказались даже на франкоиспанской границе, на средиземноморском побережье.

Старые же птицы, уже летавшие по этому маршруту, отправились на запад, стремясь добраться до знакомой трассы. Многие из них были впоследствии обнаружены на традиционном маршруте. Для объяснения способности птиц к навигации предлагалось много теорий, нередко очень слабо обоснованных экспериментальными данными. Более 100 лет назад было выдвинуто предположение о наличии у птиц чего-то вроде «магнитного компаса», который позволяет им ориентироваться по магнитному полю Земли.

С тех пор в научных журналах разных стран периодически появлялись различные варианты этой теории. Магнитную теорию навигации птиц, по-видимому, окончательно опровергли эксперименты, в которых к крыльям почтовых голубей прикрепляли небольшие магнитики; было установлено, что эти магнитики не оказывают никакого влияния на способность птиц ориентироваться в полете. Если бы птицы действительно ориентировались по магнитному полю Земли, то собственные поля магнитов, прикрепленных к их крыльям, сбивали бы их с правильного курса. Высказывалось также предположение, что птицам помогают ориентироваться в полете так называемые силы Кориолиса, возникающие вследствие вращения Земли вокруг собственной оси. Силы Кориолиса достигают максимальных значений вблизи полюсов и ослабевают по мере приближения к экватору.

Авторы рассматриваемой теории утверждали, что птицы, летящие, например, с севера на юг, могут определять свое местонахождение по величине этих сил в данной точке. Однако вследствие незначительной величины сил Кориолиса, а также по ряду других причин можно предполагать, что они лежат за пределами чувствительности воспринимающих органов птиц. Поэтому большинство ученых не придали этой теории скольконибудь серьезного значения. В начале пятидесятых годов орнитологи в надежде разрешить загадку способности птиц к навигации обратились к небу. Послевоенные работы указывали на то, что разрешение этой проблемы следует искать именно в изучении неба, и в настоящее время по существу во всех исследованиях, касающихся ориентации птиц, так или иначе фигурируют какие-либо небесные ориентиры. . Солнечный компас. Ни у кого не возникает сомнений в том, что завтра утром взойдет солнце. Это одно из самых привычных явлений нашей жизни. Поэтому у некоторых ученых возникло естественное предположение, что птицы используют для навигации этот привычный небесный ориентир. В 1949 году Г. Крамер начал серию своих блестящих экспериментов по изучению способности птиц к навигации. В результате этих исследований было убедительно показано, что птицы могут ориентироваться по солнцу.

Обычно изучение способности птиц ориентироваться во время дальних полетов сильно затрудняет один из факторов изучаемого явления - большое расстояние. После того как птица осенью покидала свою гнездовую территорию, экспериментатор, в сущности, больше не видел ее до следующего года. Даже если птица была окольцована и впоследствии ее удалось обнаружить на каком-либо этапе ее пути, это дает весьма приблизительные сведения о ее маршруте. При этом остается неизвестным, какими ориентирами пользовалась птица на этом отрезке пути и какие другие факторы оказывали влияние на ее продвижение по маршруту. В ряде экспериментов для того, чтобы определить, каким образом голуби или дикие птицы, выпущенные вдали от их гнезд, находят путь домой, использовали самолеты.

Самолет кружил над летящими птицами на некотором расстоянии, для того чтобы не спугнуть их, а находившийся на борту экспериментатор наносил на карту путь птиц и наблюдал за их поведением во время полета. Совершенно очевидно, что возможности такого эксперимента были ограниченны, не говоря уже о том, что оставалось совершенно неизвестным, оказывал ли влияние на птицу шум моторов самолета. Крамеру удалось разрешить эту проблему, прибегнув к помощи самих птиц. Эксперименты этого ученого основывались на известном явлении миграционного возбуждения птиц.

Когда наступает время отлета, птицы начинают проявлять сильное беспокойство, их как бы охватывает жгучее нетерпение. Некоторые птицы, независимо от того, сидят ли они в клетке или находятся на свободе, поворачивают голову в направлении полета и машут крыльями. Время от времени они совершают короткие полеты в этом же направлении, а затем возвращаются назад. Возбуждение бывает настолько сильным, что птицы, находящиеся в неволе, иногда разбиваются о стенки клетки, преграждающие им путь к зимовке. Однажды осенью в вашингтонском зоопарке я видел ястреба, буквально бросавшегося на стенку своей проволочной клетки.

Он на несколько минут оставался прижатым к проволоке, а затем возвращался на жердочку. Его взгляд был устремлен в небо сквозь крышу клетки и зоркие глаза, казалось, видели его свободных собратьев, направлявшихся на юг. Время от времени птица повторяла свои тщетные попытки вырваться на волю. Для того чтобы испытать влияние солнца на перелетных птиц, Крамер построил под открытым небом центро-симметричпый шестигранный павильон с шестью окнами. В павильон поставили круглую проволочную клетку со стеклянным дном, в которую посадили -скворца Sturnus vulgaris, иаходившегося в состоянии миграционного возбуждения. Подопытная птица могла видеть сквозь окна павильона лишь небольшие участки неба. За поведением птицы можно было наблюдать сквозь стеклянное дно клетки, лежа в специальной камере под павильоном. Когда сквозь окна павильона светило солнце, скворец почти всегда поворачивал голову в сторону обычного направления миграции.

Если при помощи зеркал изменяли направление солнечных лучей на 90°, то скворец также поворачивался на 90°. По-видимому, скворец ориентировался по солнцу, независимо от того, было ли это настоящее солнце или же его отражение в зеркале. Если солнце бывало закрыто плотными облаками, птица совершенно утрачивала чувство направления и могла повернуться в любую сторону; если же сильный ветер разгонял облака и вновь показывалось солнце, скворец вновь принимал правильное положение.

Поскольку описанные эксперименты можно было проводить лишь в период миграционного возбуждения, Крамер разработал другой эксперимент, который давал больше времени для наблюдений относительно влияния солнца на способность скворцов определять направление. По периметру круглой клетки были расставлены на равном расстоянии друг от друга несколько совершенно одинаковых кормушек, что исключало возможность использовать их в качестве ориентиров. Каждая кормушка была накрыта сверху резиновой пленкой со щелями для клюва, с тем чтобы птица не могла видеть, какая кормушка содержит корм.

Затем Крамер старался приучить скворца к тому, что одна из кормушек, расположенная в определенном направлении от центра клетки, содержит корм. Так, например, ежедневно между 7 и 8 часами утра Крамер приучал скворца к тому, что кормушка, расположенная на восток от центра, т. е. почти на одной линии с солнцем, наполнена кормом. (Кормушки периодически смещали по периметру клетки, чтобы исключить возможность распознавания птицей какой-либо определенной кормушки.) После многочисленных попыток скворец научился выбирать именно восточную кормушку.

Этот эксперимент затем проводили в другое время суток (17.45), когда положение солнца было иным (на западе). При этом птица в большинстве случаев направлялась опять-таки к восточной кормушке. Если же Крамер при помощи зеркал «смещал солнце», то птица выбирала другую кормушку. По-видимому, птица ориентировалась по положению солнца, вводя поправку на время дня, с тем чтобы направиться к кормушке, находящейся на востоке, а когда «положение солнца» изменяли, птица сбивалась и делала ошибку. На основании этих результатов Крамер сделал вывод о наличии у скворца «часов», благодаря которым он может учитывать перемещение солнца во времени. В противном случае’ птица должна была бы «следовать за солнцем», т. е. во второй половине дня выбирала бы кормушку, расположенную на западе, - почти на одной линии с солнцем. Таким образом, поскольку птица могла научиться связывать положение кормугаки с положением солнца, то возможно, что и во время перелетов она использует в качестве компаса солнце. Совершенно независимо от Крамера профессор Кембриджского университета Дж. Мэттьюз также пришел к выводу, что птицы используют солнце в качестве ориентира.

Однако Мэттьюз сделал еще шаг вперед, предложив гипотезу «солнечной дуги», основанную на широком изучении исключительной способности почтовых голубей и диких птиц находить родной дом. Необыкновенная способность почтовых голубей находить путь к своей голубятне широко использовалась как в военное, так и в мирное время. В период первой мировой войны, например, почтовые голуби приносили донесения из находящихся на передовой окопов, а теперь они участвуют в соревнованиях на скорость и дальность полета, устраиваемых любителями голубиного спорта. Соревнования, в которых голубей выпускают на расстоянии до 1800 километров от дома, стали в последнее время совершенно обычными. Многие дикие птицы, выпущенные на незнакомой территории, также могут возвращаться назад, к своим гнездам. Малый буревестник, который пересек Атлантический океан на пути от Бостона до Англии, представляет выдающийся пример такой способности.

Многие из этих буревестников, обитающих на прибрежных или океанических островах, если их выпустить на волю во внутренних областях континента, вдали от моря, сразу же летят в направлении к побережью. Мэттьюз выпустил 338 окольцованных буревестников на различных расстояниях от их гнезд (от 300 до 600 километров). Многие птицы не просто вернулись к своим гнездам, но определили нужное направление полета в течение нескольких минут после освобождения, как если бы они располагали картой и компасом. Однако, как и в экспериментах Крамера со скворцами, способность птиц находить дорогу к дому в облачную погоду сильно уменьшалась. По мнению Мэттьюза, птицы определяют географическое положение незнакомой им местности, оценивая путь, который проходит солнце по небосводу.

Птица обладает чем-то таким, что заменяет ей точные навигационные приборы, которыми пользуется человек. Моряк, например, может определить широту своего корабля при помощи специальных таблиц и секстанта - инструмента, который измеряет высоту солнца над горизонтом. В полдень, когда солнце стоит на небе выше всего, секстант дает широту данной точки на поверхности земли. Чем выше солнце в полдень, тем южнее находится данная точка в северном полушарии. Мэттьюз предполагает, что с помощью своего «секстанта» птицы могут «вычислить» высоту солнца в любое время дня, последив за ним всего несколько минут. Измерив крошечный отрезок пути, который описывает солнце по небу за этот очень короткий промежуток времени, птицы могут установить, в какой точке неба солнце будет находиться в полдень. Затем, сравнивая высоту солнца над горизонтом в данной местности с высотой его «дома», птица может узнать, на север или на юг надо лететь к своему гнезду. Определение высоты солнца над горизонтом можно использовать и для вычисления долготы местности. Например, в полдень солнце в западной части НьюЙорка стоит ниже, а в восточной - выше, тогда как в Калифорнии в этот момент солнце едва только поднимается над горизонтом.

Для пассажиров же корабля, находящегося у восточного побережья Лонг-Айленда, солнце в этот момент уже достигнет наибольшей высоты над горизонтом и начнет «скатываться» в западную часть неба. Если у пассажира этого корабля есть точные часы, показывающие нью-йоркское время, он может легко определить, к востоку или к западу от НьюЙорка находится корабль. Для этого нужны часы, называемые хронометром. Это точный прибор, необходимый для навигации. Аналогичным образом птица, имеющая «хронометр», показывающий ее «домашнее» время, может по положению солнца определить, к востоку или к западу от гнезда она находится. Теория Мэттьюза вызвала вполне обоснованную критику. Во-первых, за то время, которого достаточно птицам для определения своего местонахождения, солнце практически не сдвигается на небосводе. В экспериментах самого Мэттьюза буревестники выбирали общее направление полета в течение нескольких минут.

В других экспериментах было установлено, что некоторым голубям достаточно для этого даже 20 секунд. Солнце же описывает на небе дугу примерно в один градус за каждые 4 минуты, что соответствует 7 расстояния от линии горизонта до зенита. Для того чтобы определить на глаз такое изменение положения солнца и на основании этой оценки - точку наивысшего положения солнца над горизонтом, птице пришлось бы провести совершенно фантастические расчеты. Кроме того, орнитологам, повторившим эксперименты Мэттьюза, но в гораздо больших масштабах, не удалось воспроизвести его результаты.

Тем не менее, несмотря на множество недостатков теории Мэттьюза, она пока что дает наиболее правдоподобное объяснение ориентации птиц при дневных полетах. Путь в ночи. На протяжении тысячелетий звезды и созвездия ночного псба служили для человека не только источником вдохновения, но и помогали ему ориентироваться в ночное время. По звездам водили свои корабли древние мореплаватели. Древние греки и римляне считали, что «звезды сделаны пз горящих облаков»; они давали названия звездам, и мы до сихпор пользуемся греческими и латинскими названиями звезд и созвездий. Однако теперь мы знаем, что еще более древние астрономы имеются в. царстве животных.

В сущности, это даже не астропомы, а скорее древнейшие из мореплавателей, потому что, путешествуя в воздушном океане, они ориентировались по звездам задолго до того, как весло человека впервые погрузилось в морскую воду. Речь идет о птицах, совершающих свои перелеты в ночное время. Известно, что многие птицы пускаются в путь только под покровом темноты. Если в период миграций паправить в почное небо луч радиолокатора, то обнаружится, что ночью в небе гораздо больше птиц, чем днем. Ф. Зауэр получил несомненные доказательства того, что певчие птицы, мигрирующие ночью, ориентируются именно по звездам.

Весной и летом в Северной Европе можно видеть множество певчих птиц, которые выкармливают своих птенцов, гнездясь в кустарниках и живых изгородях парков и садов. С наступлением осени все они, стар и млад, отправляются зимовать в Африку. Одна из таких птиц, славка-завирушка (Sylvia curruca), летит обычно с севера на юго-восток через Балканы, а затем, пролетев над Средиземным морем и путешествуя в основном по ночам, направляется по долине Нила на юг, к месту своей постоянной зимовки в верховьях этой реки. Зауэр провел в планетарии очень остроумный эксперимент: он заставил славку-завирушку, выращенную в его лаборатории, совершить «путешествие в Африку», не покидая клетки.

Находясь под искусственным звездным небом, птица продемонстрировала ученым свою изумительную способность к «навигации». Когда на купол планетария спроецировали картину осеннего неба, характерную для Северной Европы, птица, сидящая в клетке, повернулась на юго-восток, то есть в ту сторону, куда она обычно летит осенью. Затем расположение звезд и созвездий на искусственном небе постепено изменяли так, чтобы птице казалось, что она перемещается по миграционному маршруту. Когда на куполе планетария появилось изображение неба юга Греции, птица повернулась сильнее к югу, а как только картина неба стала соответствовать небу Северной Африки, славка «взяла курс» прямо на юг. Конечно, птица сидела на месте и не пролетала ни над морями, ни над лесами, однако вела она себя так, как будто ее длительное путешествие подходило к концу.

Птица, которая провела всю свою короткую жизнь в клетке и никогда не видела неба, продемонстрировала врожденную способность ориентироваться по звездам. Она следовала по пути своих предков. Сильный «сдвиг по долготе» привел к таким же результатам. При появлении картины неба, характерного для Сибири, птица какое-то время находилась в растерянности. Такое изменение вида ночного неба было равносильно тому, как если бы ее в одно мгновенье перебросили на несколько тысяч километров на восток. Сбитая с толку птица взволнованно смотрела на незнакомое небо и с минуту оставалась неподвижной. Затем она резко повернулась и попыталась лететь (в клетке!) на запад,» т. е. стремилась вернуться назад, туда, где была раньше. Картину ночного неба постепенно меняли, как будто птица летела в Европу, и, оказавшись наконец под «осенним небом Северной Европы», она снова повернулась на юг, в направлении обычного осеннего маршрута славок. Когда на куполе планетария появилось небо Вены, птица повернулась еще больше на юг. Узнала ли она какую-то звезду или созвездие, которые, как подсказывала ей врожденная способность ориентироваться, должны быть видны при миграцпн. на юг? Наконец на куполе планетария звезды приняли такое же положение, как и на настоящем небе над планетарием, и славка повернулась на юго-восток - в направлении своей обычной миграции.

Птица снова была дома. Результаты этого эксперимента свидетельствуют о том, что славка, по-видимому, сопоставляет расположение звезд на ночном небе не только с временем суток, но и с временем года. Увидев незнакомое небо Сибири, птица обратилась к своим «часам и календарю», спрятанным где-то под перьями, и, выяснив, где в данное’ время должна наблюдаться именпо такая картина звездного неба, определила свое местонахождение. Вряд ли можно сомневаться, что славка при этом ориентировалась по звездам. Без всяких видимых ориентиров, взглянув лишь один раз на небо, птица точно определяла, где она находится. Столь сложная и точная система навигации у существа весом всего лишь около 30 граммов кажется совершенно поразительной. Ведь помимо всего прочего взаимное расположение звезд на черном бархате неба постоянно меняется: для каждого времени года характерно свое расположение звезд и каждую ночь звезды и созвездия движутся по небосводу.

Быть может, Полярная звезда, постоянно находящаяся близ северпого полюса неба, служит небесным маяком для летящих ночью птиц? Однако эксперименты доктора Зауэра заставили отвергнуть это предположение. Что же нам остается? Отрицать наличие у птицы высокоорганизованной системы навигации только потому, что мы не в силах объяснить ее устройство и принцип действия? При выдвижении гипотез о системах ориентации разных животных вряд ли будет правильным исходить из того, что существует некая единая система ориентации, свойственная всем птицам и даже всем животным. Несомненно, например, что сильная облачность мешает большинству птиц правильно ориентироваться и днем и ночью; погвидимому, солнце и звезды служат ориентирами для птиц. Но как же в таком случае объяснить, что однажды стая кайр достигла одного островка в Беринговом море раньше корабля, который она обогнала в густом тумане и который двигался к тому же острову, ориентируясь по компасу? Как ориентировались эти птицы? Ответ на этот вопрос может дать только будущее.

Вопрос о том, как птицы мигрируют и находят верный путь даже на больших расстояниях, всегда интересовал людей. Навигация птиц до конца не изучена. Наверняка ученый, окончательно разгадавший механизмы ориентации птиц, получит Нобелевскую премию.

Как птицы находят верный путь?

Вопрос о том, как птицы мигрируют и находят верный путь даже на больших расстояниях, всегда интересовал людей . Долгие годы считалось, что важную роль в правильной навигации играют звезды, солнце. На сегодняшний день уже давно известно, что основную роль в ориентации птиц играет магнитное поле. Учёные насчитывают около 50 видов живых существ — млекопитающих, птиц, земноводных, пресмыкающихся, рыб и даже насекомых, которые могут пользоваться магнитным полем Земли для навигации. Но даже с такими развитыми технологиями мы можем только предпологать о механизмах восприятия магнитного поля. В последнее десятилетие пристальное изучение магнетизма Земли позволило обнаружить несомненную связь живых организмов с этим явлением. И это проясняет картину возможных сбоев навигационной системы китов, а также потерю пути при дальних массовых перелетах птиц и поразительно точное следование нужным курсом при обычных благополучных условиях.

Предположительно у птиц есть несколько способов восприятия :
- Глаза
- Клюв

Птицы видят магнитное поле Земли

По последним сообщениям Nature, исследователи из University of Oldenburg обнаружили, что перелетные птицы не просто «чувствуют» магнитное поле Земли, но видят его глазами.
Учёные проводили свои исследования на садовых славках (Sylvia borin), которым вводили молекулярные маркеры, способные перемещаться по нервным волокнам во время передачи сигналов между нервными клетками. Один вид маркера был введен в сетчатку глаза, а второй – в область мозга(«кластер N»), которая является единственной областью мозга у птиц, связанной с ориентированием с помощью магнитных полей.
Результаты ошеломили исследователей. Выяснлось, что птицы не просто чувствуют магнитное поле — они видят его.

В глазах за эту функцию отвечают молекулы белков криптохромов, которые могут находиться в разных состояниях в зависимости от собственной ориентации относительно магнитных полей.

Какой глаз видит магнитное поле?

Учёные уже догадались, что птицы способны видеть магнитное поле. Вольфганг Вильчко не остановился на достигнутом и продолжил эксперименты с малиновками. Для этого он намеренно вызывал у птиц желание лететь на юг. Птицам поочередно закрывали то левый, то правый глаз . Малиновкам из контрольной группы оставили глаза открытыми. Много дней птиц приучали носить шапочки, закрывавшие им один глаз. Только после этого начался эксперимент. Результаты не заставили себя ждать и не оставили никаких сомнений. Птицы из контрольной группы летели в том самом направлении, как и положено было при перелете. Такой же маршрут выбирали и птицы, глядевшие правым глазом. А вот с изменением склонения магнитного поля изменялось направление перелета. А те птицы, у которых был открыт только левый глаз вообще не могли понять куда нужно лететь. Очевидно, их «компас» спрятан в правом глазу. Все нервные волокна, отходящие отсюда, ведут в левую половину мозга, которая и обрабатывает информацию о магнитном поле Земли.

Для чего в клюве магнитные кристалы?

Учёные предполагают, что кроме зрительного восприятия, у перелетных птиц может существовать еще один орган восприятия магнитных полей. Это клюв , в котором были найдены магнитные кристаллы . Предполагается, что эти две системы дополняют друг друга: глаза играют роль компаса , а с помощью клюва измеряется напряженность магнитного поля и составляется своеобразная навигационная карта для перелетов.

«Компасы птиц». Эксперимент Вольфганга Вильчко

Вольфганг Вильчко впервые доказал, что мигрирующие голуби используют магнитное поле, чтобы ориентироваться во время перелета. Их магнитные сенсоры показывают им направление силовых линий магнитного поля. На отклонение стрелки голубиного компаса влияет угол наклона магнитного поля Земли к её поверхности. Так птицы определяют где полюса, а где экватор. Внутренний компас птиц подстраивается под напряженность магнитного поля Земли, но может перестраиваться и под другие значения напряженности магнитного поля во время миграции птиц.

Компасы такого типа были обнаружены более чем у двадцати видов птиц, в основном, у перелетных певчих птиц.

Эксперимент Вольфганга Вильчко

Только что вылупившихся цыплят ученые высаживали рядом с красным мячиком, который птицы воспринимали как свою «мать». Затем ученые прятали мяч за одним из четырех экранов, который был установлен в северном направлении.

Дальнейшие эксперименты показали, что магнитные датчики цыплят действуют схоже с датчиками голубей. Они также реагируют на отклонение и напряженность локального магнитного поля Земли. Оказалось, что птицам нужен для ориентации коротковолновый свет (видимо, голубой). В длинноволновом диапазоне за желтым светом эта способность теряется у всех птиц, которых удалось проверить на сегодняшний день. Эти эксперименты привели ученых к выводу, что способность к ориентации по магнитному полю Земли может быть у всех птиц. Они считают, что способность ориентироваться по магнитному полю Земли появилась давно , задолго до того, как птицы начали мигрировать, и существовала у примитивных птицеобразных, помогая им ориентироваться на местности: в поисках пищи и воды, своих гнезд, мест для сна.

Эксперимент Мартина Викельского

Учёные из университета Принстона выяснили, как ориентируются перелётные птицы. Профессор Мартин Викельский со своими коллегами выбрал для эксперимента дроздов, которые пересекают штат Иллинойс на пути из Южной Америки в Канаду. Дрозды летят ночью и было известно, что птицам помогает внутренний магнитный компас. Учёные отловили нескольких птиц и поместили их в клетки с сильным магнитным полем, направленным поперёк магнитного поля Земли . После прыбывания в такой клетки птичий компас действительно сбился. Дроздов выпустили ночью и вместо севера они полетели на запад и прошли так в неправильном направлении несколько сот километров. Полёт птиц отслеживали по крошечным радиопередатчикам. Но через день птицы снова повернули на север , заново «откалибровав» свой магнитный компас. Предположительно птицы сориентировались по закату.

Разные породы птиц используют разные способы ориентации. Это может быть и магнитное поле Земли, и Солнце, и звёзды, и поляризованный свет.

Навигация почтовых голубей. Эксперимент Анны Гальярдо

Очень известными навигаторами являются почтовые голуби. Почтовый голубь, даже если его увезти за 1000 километров, в большинстве случаев летит к привычной голубятне по кратчайшему маршруту. Способностью возвращаться к гнездовьям из незнакомых дальних мест обладают многие птицы.

Итальянские исследователи во главе с доктором Анной Гальярдо из университета Пизы пришли к выводу, что не сбиться с правильного пути, преодолевая расстояния в сотни километров, почтовым голубям помогает обоняние.

В 2004 году новозеландские учёные выдвинули гипотезу о магнитных частицах в клювах голубей, играющих роль микроскопического компаса. Но Гаглиардо говорит, что птицы могут применять и другой метод: «Они действительно имеют способность обнаруживать магнитные поля, но это не означает, что голуби всегда используют только это».

Эксперимент

Учёные из Пизы удалили у 24 почтовых голубей часть обонятельного нерва , а у других 24 птиц части черепного тройничного нерва. Третья группа из 24 птиц никаким вмешательствам не подвергалас ь, оставшись в качестве контрольной группы. Все три группы птиц были выпущены на волю приблизительно в 50 километрах от их дома-голубятни. На следующий день все, кроме одной, птицы с повреждённым тройничным нервом были дома - это значит, что способность обнаруживать магнитные поля в данном случае не использовалась . Из группы контроля тоже потерялся только один голубь. А большинство голубей, лишённых обоняния, до голубятни так и не добрались - вернулись лишь четыре птицы .

Всё это говорит о том, что почтовые голуби создают «карты запахов» тех областей, над которыми пролетают, и в дальнейшем используют их для навигации.

Место, где разрываются птичьи сердца

Джатинга, расположенная в 334 км к югу от города Гувахати. Это место, полное тайн для ученых, и настоящий кошмар для птиц. В течение около четырех месяцев, начиная с августа, когда ночи становятся безлунными, туманными, ветреными и дождливыми, эта деревня, где проживает не более 2.500 человек, превращается в кладбище птиц: они летят сюда, чтобы разбиться насмерть.

По легенде люди из племени Земи Нага стали первыми свидетелями странного поведения птиц. Произошло это в конце XIX-ого века, когда птицы, потеряв ориентацию, тысячами стекались на свет костров , которые местные жители жгли для отпугивания диких свиней. Птицы стали падать замертво , это напугало жителей деревни, и они решили, что это не добрый знак, что это боги сбрасывают с небес злых духов в птичьем обличии. Находится в опасном месте люди племени Зами Нага не захотели и вскоре покинули деревню Джатинга.

В 1905 года на это место пришло другое племя – Джайнтиа. Люди вновь были поражены странным поведением птиц, падавших им на головы, когда жители деревни при свете факелов собирали свой скот. Свет, который давали бамбуковые факелы, чем-то привлекал стаи птиц. Но, в отличие от племя Земи Нага, люди из рода Джайнтиа посчитали птиц «даром, посланным богами».

Обнаружил загадочную долину английский чаевод Е.П. Джи , который сам наблюдал такой «птицепад» и описал его в книге «Девственная природа Индии» в 1957 году. Он не был орнитологом, и специалисты посчитали его сообщение о необычном поведении птиц выдумкой . Лишь зоолог Сенгупта заинтересовался этим и отправился в горы Ассама, чтобы на месте проверить достоверность рассказанного чаеводом.

Сенгупта пришел к выводу, что причинами странного «птицепада» служат геофизические аномалии и особое состояние атмосферы , которые нарушает работу нервной системы птиц.

Копия поста с сайта LiveJournal

Entry tags: работа навигация птиц
Отвечал в комментах на вопрос о том, как голуби находят дорогу домой, и решил повторить у себя в журнале.
Наверное, способность животных к навигации — это один из самых интригующих вопросов в зоологии, многим будет любопытно почитать короткое обобщение наших знаний по данному вопросу.

С возвращеним голубей домой история давняя и все еще толком непонятная. Способность находить свой дом (хоминг) есть у всех птиц, не только у голубей. Но голуби оседлые, весь год живут на одном месте, и достаточно крупного размера, чтобы нести письмо, поэтому их удобно использовать в качестве почтальонов, что люди издавна и делали. Естественно, была проведена их селекция на способности к навигации. Теперь это один из самых удобных модельных видов для изучения хоминга и механизмов навигации животных. Написано на эту тему горы статей и книг. В последнее время появилась возможность одевать на птиц разнообразную аппаратуру — GPS-логгеры, радиопередатчики, приборы для снятия электроэнцефалограммы в полете и пр. Одна из самых интересных работ была сделана в Италии — на голубей повесили GPS, и завезли на несколько десятков км и выпустили. Оказалось, что голуби возвращались вдоль крупных автомагистралей, двигались вдоль них, пока направление к дому более-менее совпадало с направлением дороги, а потом поворачивали на транспортной развязке, если новая магистраль точнее вела к дому. Но принципиальное направление к голубятне они выбирают, используя информацию из разных источников. Это и солнце, и магнитное поле, и запаховая ориентация. Есть несколько научных школ, каждая из которых занимается одим из этих видов ориентации, но, похоже, что все системы есть у птиц, и всеми они могут пользоваться. Только в зависимости от условий выбирают одну из них или несколько сразу.
Самой древней, похоже, является магнитная система, она есть у многих животных. Птицы могут чувствовать магнитное поле земли и ориентируются с его помощью. Видимо, у птиц есть магнитная карта района, где они живут, и представление о принципах изменения магнитного поля при перемещениях в масштабе планеты.
Птицы пользуются солнцем для ориентации примерно также как человек. У них есть внутренние часы, и они вычисляют, на какой угол относительно солнца нужно повернуть, чтобы лететь в нужном направлении. Они вводят поправку на движение солнца. Если перевести им часы, посадив в вольеру на другой фотопериод, когда субьективный день птицы начинается тогда, когда в природе солнце уже в зените, например, то птицы будут ошибаться как раз в соответствии с продолжительностью этого временного сдвига.
Похоже, что запахи тоже могут служить ориентирами, по крайней мере, у голубей и альбатросов.

Подведём итоги

Система навигации у птиц — сложная, многоступенчатая система врожденных программ и приобретенного индивидуального опыта.Для ориентации в пространстве птицы используют различные «внутренние компасы»:

- магнитное поле Земли
- «карты запаха»
- Солнце
- звёзды
- поляризованный свет

Голубиная почта всегда пользовалась уваением, ведь они без труда найдут дорогу домой. Но всё чаще искусственные источники света и многие другие действия человека путают птиц, что приводит к многочисленным смертям пернатых.

Вы никогда не задумывались над тем, как птицы находят правильный путь, преодолевая безбрежные океаны и обширные пустыни во время своих перелётов и миграций (подробнее о )? Какими ориентирами они пользуются, какими органами чувств руководствуются? Нередко этими вопросами задаются охотники, и наша сегодняшняя публикация готова дать ответ на этот вопрос…

Важность необходимости умения ориентироваться в пространстве для птиц

Для птицы хорошо ориентироваться в пространстве – означает, прежде всего, иметь надежную информацию об окружающей их обстановке. Ведь, изменения её в одних случаях могут оказаться роковыми для птицы, в других — напротив, благоприятными, но и о тех, и о других ей нужно своевременно знать. Поведение животного будет зависеть от того, как его органы чувств воспримут эти изменения и как оценит их высший орган ориентации – мозг. Понятно, что успех в борьбе за существование будет сопутствовать той особи, чьи органы чувств и мозг быстрей оценят ситуацию и чья ответная реакция не заставит себя ждать. Вот почему, говоря об ориентации животных в пространстве, мы должны иметь в виду все 3 её компонента – ориентир раздражитель, воспринимающий аппарат, и ответную реакцию.

Несмотря на то, что в процессе эволюции все эти компоненты складывались в определенную сбалансированную систему, далеко не все ориентиры воспринимаются птицами, так как пропускная способность их органов чувств весьма ограничена.

Так, птицы воспринимают звуки частотой до 29000 ГЦ, тогда как летучие мыши – до 150 000 Гц, а насекомые – ещё выше – до 250 000 Гц. Хотя, с физической точки зрения слуховой аппарат птицы воздухе и весьма совершенен, в воде он отказывает, и звуковая волна идет к слуховой клетке неудобным путем – через всё тело, тогда как барабанная перепонка и слуховой проход оказываются полностью заблокированными. А, как бы помог рыбоядным птицам подводный слух! Известно, что дельфины с помощью слуха могут точно определять вид рыбы, её размеры, её местоположение. Слух для них вполне заменяет зрение, тем более, что возможности последнего ещё более ограничены – просматриваемое пространство, к примеру, для пустельги и сипухи, составляет 160 градусов, для голубей и воробьиных – около 300 градусов, у дятлов – до 200 градусов. А, угол бинокулярного зрения, то есть зрения двумя глазами, позволяющего особенно точно рассмотреть предмет, составляет у большинства птиц 30-40 градусов, и только у сов, с их характерным лицом – до 60 градусов.

Ещё меньше возможностей у обоняния у птиц – направление ветра, густые заросли и прочие помехи сильно затрудняют ориентацию по запахам. Даже грифы урубу, спускающиеся к падали с огромной высоты, руководствуются тонкой струйкой поднявшегося кверху запаха, и те далеко не всегда могут пользоваться этим видом ориентации.

Отсутствие необходимых органов чувств приводит к тому, что многие из природных явлений, как ориентиры, птицами не используются или используются недостаточно. Экспериментальные данные, отдельные полевые наблюдения дают весьма противоречивую картину. В определенных ситуациях, например, на ориентацию птиц влияют мощные радиостанции, однако – такое происходит не всегда и не во всех случаях. Птицы, безусловно, воспринимают изменения давления, но как тонко может барический градиент использоваться в качестве ориентира, совершенно неясно. Таким образом, ориентационные способности каждой отдельно взятой особи весьма ограничены . Между тем, птицам с их открытым образом жизни, окруженным массой врагов и других житейских неприятностей, надежная ориентация – вопрос жизни и смерти. И, зачастую их недостаточные индивидуальные возможности корректируются благодаря общению с другими особями, в стае, в гнездовой колонии.

Каждый охотник знает, что к одиночной птице гораздо легче подобраться, чем к стае, которая имеет множество ушей и глаз, и где предупреждающий крик или взлет одной особи может переполошить остальных. Различные крики, позы, яркие пятна в окраске обеспечивают птицам совместное поведение в стае и связь между ними. Создается, как бы групповая, вторичная ориентация, где возможности ориентироваться, индивидуальный опыт одной птицы значительно возрастают за счёт других птиц. Здесь уже не обязательно видеть самого хищника, достаточно слышать предупреждающий крик соседа. Конечно, сосед кричит вовсе не потому, что хочет предупредить других птиц – у него это естественная реакция на врага, однако, остальные птицы воспринимают этот крик именно, как сигнал об опасности.

Групповая или вторичная ориентация у птиц

Дело еще больше усложняется и возможности одной особи еще более возрастают, когда связь устанавливается между птицами разных видов внутри сообщества. К примеру, крик мелкой птицы на сову собирает в лесу весьма разнообразное общество – синиц, славок, поползней, зябликов, ворон, соек и даже мелких хищников. Точно такое же понимание устанавливается между куликами, чайками и воронами на морских отмелях, между различными дроздами и т.д. В лесу роль сигнальщика играет сорока – крик которой, к примеру, при приближении крупного хищника или человека воспринимается не только самыми разнообразными птицами, но и млекопитающими. Здесь групповая ориентация идет ещё дальше.

Основные факторы птиц для ориентации в пространстве

Зрение, как способ ориентации в пространстве

По остроте зрения птицы не имеют себе равных. Общеизвестны удивительные способности в этом отношении различных хищников. Сокол сапсан видит небольших птиц на расстоянии свыше километра. У большинства мелких воробьиных острота зрения в несколько раз превышает остроту зрения человека. Даже голуби различают 2 линии под углом в 29 градусов, тогда как для человека этот угол должен быть не менее 50 градусов.

К тому же, птицы обладают цветным зрением. Можно, к примеру, научить цыплят клевать красные зерна и не клевать голубые или белые, в направлении красного экрана подбегать к голубому и т.п. Косвенно это доказывается и удивительным разнообразием окраски птиц, представленной не только всеми цветами спектра, но и самыми разнообразными их сочетаниями. Окраска играет большую роль в совместном поведении птиц и используется ими, как сигнал при общении. Наконец, можно добавить, что недавними опытами польских исследователей, подтвердилась способность птиц воспринимать инфракрасную часть спектра, и следовательно — видеть в темноте. Если это действительно так, то тогда становится понятной загадочная способность птиц жить в темноте или при сумеречном освещении. Помимо сов, к этому видимо, способны и другие птицы – в условиях долгой Полярной ночи в Арктике остаются зимовать белая и тундряная куропатки, ворон, кречет, чечетка, пуночка, различные чистики.

Эти особенности зрения птиц обеспечиваются замечательным анатомическим строением их глаз. Прежде всего, птицы обладают относительно огромными глазными яблоками, составляющими у сов и соколов, к примеру, около 1/30 от веса тела, у дятла – 1/66, у сороки – 1/72. Глаз птицы имеет большое количество чувствующих клеток колбочек, необходимых для острого зрения, снабженных красными, оранжевыми, зелеными, или голубыми масляными шариками. Специалисты полагают, что масляные шарики дают возможность птице различать цвета.

Другой особенностью глаза птицы являются быстрая и точная его настройка – аккомодация . Это осуществляется изменением кривизны хрусталика и роговицы. Быстрая аккомодация позволяет, к примеру, соколу, бьющему с большой высоты по утиной стайке, отчетливо видеть птиц и правильно оценивать расстояние в любой момент своего броска. У степных птиц в сетчатке глаза имеется также особая плоска чувствительных клеток, позволяющая особенно отчетливо и на большом расстоянии рассматривать горизонт и удаленные предметы. Глаза бакланов, чистиковых, уток (о ), гагар, охотящихся за рыбой под водой, имеют специальные приспособления обеспечивающие подводное зрение птицам.

Хорошее зрение хищных птиц используется в .

Обоняние, как способ ориентации в пространстве

Обоняние птиц до сих пор остается мало исследованным и весьма загадочным. Длительное время считалось, что птицы обладают плохим обонянием, однако новые эксперименты говорят об обратном. Певчие птицы, утки, некоторые куриные хорошо различают запахи, к примеру, гвоздичного и розового масла, бензальдегида…

Утки способны находить коробку с пищей по особому запаху с расстоянии в 1,5 метра и направляться прямо к ней. Хорошим обонянием обладают грифы урубу, некоторые козодои, буревестники, чайки. Альбатросы собираются на брошенное в воду сало с расстояния в радиусе 10-ка километров. Охотникам также известны случаи, когда вороны находили закопанные в снег куски мяса. Кедровки и кукши довольно точно отыскивают в вольере кусочки пищи, запрятанные в подстилку, руководствуясь при этом исключительно своим обонянием.

Вкус, как способ ориентации в пространстве

Птицы, в общем, обладают посредственно развитым вкусом и только в отдельных группах, как например, у зерноядных птиц, хищников и благородных уток, он достигает некоторого развития.

Осязание, как способ ориентации в пространстве

Большое количество нервных окончаний в виде осязательных телец располагается в коже птиц, в основании перьев, в костях конечностей. С их помощью птица может определять, например, давление воздушной струи, силу ветра и температуру воздуха. Эти нервные окончания очень разнообразны по строению и функциям, и существует мнение, что именно среди них следует искать неизвестные пока органы восприятия электрических, магнитных полей.
Большое количество осязательных телец располагается на кончике клюва бекаса, вальдшнепа и других куликовых, добывающих пищу зондированием влажной земли, тины и грязи. У пластинчатоклювых, например, у кряквы, кончик клюва также покрыт чувствительными тельцами, отчего верхнечелюстная кость, как и у вальдшнепа, выглядит совершенно ячеистой.

Воспринимая единую по своей сути среду в виде отдельных раздражителей, ориентиров, органы пространственной ориентации птицы вычленяют только некоторые качества предмета. При этом, пространство, в котором располагаются эти ориентиры, анализируется ими также не безгранично. Отдельные ориентиры воспринимаются на больших дистанциях и имеют максимальную дальнобойность, как например звук. Другие действуют в непосредственной близости, при контакте — как осязательные тельца клюва. Действие запаха падали для парящих в воздухе грифов ограничивается узкой струйкой поднимающегося воздуха. Все органы чувств, следовательно, имеют свои пространственно ограниченные сферы действия, в пределах которых и осуществляется анализ предметов, ориентиров.

Сферы действия органов чувств имеют свою биологическую оправданную направленность. В тех случаях, когда речь идет об особенно ответственных ситуациях в жизни вида, например о ловле добычи или уклонении от опасности, одного органа чувств, к примеру зрения, слуха или обоняния, бывает недостаточно, поэтому, несколько органов чувств действуют вместе. Происходит наслаивание сфер их действия, и оказавшийся в их пределах предмет анализируется, и будет воспринят более всесторонне и точно.

Так, у сов и луней, существование которых зависит от того, как точно они определят месторасположение мыши, а действие часто происходит в густых зарослях или при ограниченной видимости поля зрения и слуха, имеется общая передняя направленность, образующаяся в результате переднего смещения глаз и ушей — такое лицо представляет собой очень характерный признак для сов и для луней.

Это дублирование органов чувств друг другом и обеспечивает цельное восприятие среды, природных ориентиров. Конечно, эту цельность обеспечивают уже не только органы чувств, но и главным образом мозг, который и объединяет информацию, поступающую по отдельным каналам, и оценивает ситуацию в целом. С работой мозга связаны, прежде всего, высшие формы ориентации, так называемый хоминг, возврат к месту гнездования искусственно удаленных птиц, ориентация при сезонных перелетах, прогнозирование погоды, счет и т.д.

Способности мозга птиц к рассудочной деятельности

Открытый подвижный образ жизни, постоянное чередование различных ориентиров, необходимость общения развили у птиц зачатки рассудочной деятельности и способность к элементарным абстракциям. Если вы подкрадываетесь к кормящимся в поле воронам и при этом для маскировки спуститесь в овражек, то птицы будут ждать вас у другого конца овражка, там, где вы должны будете очутиться, сохраняя первоначальное направление движения. Точно так же поступит гусиная стая или журавли, наблюдающие за подкрадывающейся к ним лисицы.

Однако, оценка, направленная на движение ориентира, отчасти экстраполяция его не менее важна в сложных формах ориентации нежели способность к количественной оценке ориентирования. В опытах удавалось научить кур клевать любое зерно по выбору – второе, третье и т.д., а вот голубей удалось научить различать различные комбинации зерен. Сороки и вороны также хорошо различают разные наборы предметов, и даже число людей и животных. Птицы, к примеру, без счета могут отличать 5 предметов от 6 – задача не всегда доступная даже для человека. Специальные опыты показали также, что птицы хорошо различают контуры и форму предметов, геометрических фигур и.т.д.

Эти способности играют особенно большую роль при астронавигации птиц – использовании в качестве ориентиров небесных тел.

Так, славок помещали в планетарий и следили за направлением их полета при различном положении звездного неба. Удалось доказать, что общая картина звездного неба может использоваться ими как ориентир при сезонных перелетах. Нетрудно представить себе те сложности, которые при этом возникают перед птицей – необходимость экстраполировать движение звезд, точно, до 15-20-ти минут чувствовать время, воспринимать различные комбинации созвездий, число звезд и.т.д.

Открытие способности птиц ориентироваться по солнцу изумило ученых, но то, что во время ночных пролетов птицы ориентируются по звездам, буквально потрясло их. Это было доказано через несколько лет после открытия Крамера молодыми исследователями из Фрейбургского университета (ФРГ) Францем Зауэром и его женой Элеонорой.

Вскоре после защиты в 1953 году диссертации по зоологии Франц Зауэр заинтересовался проблемами поведения животных, особенно тем, как влияют на их поведение условия окружающей среды. И он продолжает во Фрейбурге работу над второй диссертацией, специализируясь на этот раз в области этологии. Одной из первых проблем, решению которой они с женой отдали много сил и терпения, была проблема общения в мире животных, и в частности проблема обучения пению молодых птиц.

В начале 50-х годов мнения ученых по этому вопросу расходились. Многие считали, что птицы обучаются пению, подражая старшим и более опытным сородичам. Рабочая гипотеза Зауэров сводилась к тому, что птицам не нужно учиться петь, что поют они благодаря врожденной способности, которая не зависит от того, есть ли вокруг них хорошие певцы или нет.

Проверить эту гипотезу Зауэры решили на европейских славках с их очень характерной песней. В соответствии с требованиями эксперимента им приходилось выращивать своих славок в условиях полной изоляции, в звуконепроницаемом помещении, так чтобы в течение всей своей жизни их питомцы не слышали ни одной птичьей песни.

Как будут вести себя эти изолированные от мира птицы, когда они вырастут и будут готовы обзавестись семьей? Запоет ли взрослый самец свою песню, которая объявит всем, что он занял определенную территорию и готов создать семью? И запоет ли он вообще?

Результатов своего эксперимента Зауэрам пришлось ждать долго. Наконец, в один прекрасный день исследователи возликовали - их тяжкие труды не пропали даром. Птица запела!

Она пела, хотя никогда за всю свою жизнь не слышала пения. Потом запел еще один выращенный в полной изоляции самец, потом другой, третий. Хотя это пение и нельзя было назвать совершенным, но в нем ясно проступала мелодия, которую славки обычно поют в это время года. Итак, гипотеза была подтверждена экспериментом.

Изучение миграций птиц позволило установить один очень важный факт: многие птицы ежегодно совершают перелеты за сотни и тысячи километров по определенному, только им свойственному маршруту. Сбившиеся с пути или искусственно удаленные от пролетных путей птицы находят дорогу к местам, через которые проходит их миграция, и продолжают перелет по своему обычному маршруту.

Эксперименты Крамера положили начало изучению способов ориентации птиц. Было обнаружено, что днем птицы ориентируются, сопоставляя положение солнца со временем, которое показывают их внутренние часы. Однако многие птицы мигрируют ночью. Европейские славки, с которыми экспериментировали Зауэры, принадлежали именно к таким видам. Если птицы ориентируются днем по солнцу (а Зауэры обнаружили, что и славки могут это делать), то почему бы им ночью не ориентироваться по звездам?

Так начались продолжительные и напряженные исследования, ставящие перед собой цель - выяснить, как славки ориентируются в полете. Повсюду в Европе эти мелкие певчие птицы весной выводят птенцов и в течение лета благополучно кормятся днем на кустах бузины и ежевики. Но в одну из августовских ночей вся местная популяция данного вида исчезает: начинается осенний перелет. На следующее утро новая группа прибывает из более северного района, с тем чтобы через несколько дней отбыть в южном направлении. Сначала полностью исчезают садовые славки, затем серые, за ними следуют славки-завирушки и наконец славки-черноголовки.

Мелкие птицы, отличающиеся более интенсивным обменом веществ, расходуют свои запасы энергии в полете быстрее, чем крупные. Поэтому они вынуждены так же быстро и эффективно возобновлять их, а это легче всего сделать днем. Кроме того, ночью меньше отвлекающих факторов и птицам легче преодолевать большие расстояния.

Куда же отправляются славки на зиму? Метод кольцевания птиц позволил ответить на этот вопрос. Обычно славки улетают в различные районы Африки. Например, славка-завирушка зимует в центральной части Африки, между 10° и 50° восточной долготы. Славки, летящие из Скандинавии в Южную Африку, проделывают треть кругосветного путешествия. Весной их опять охватывает перелетное беспокойство, какое-то внутреннее чувство смены времени года заставляет их готовиться к обратному перелету на север.

«Самое замечательное, - пишет Зауэр, - заключается в том, что каждая птица сама находит путь к месту назначения! Славки не следуют за вожаком и не путешествуют группой. Они летят в одиночку. И молодые птицы, впервые проделывающие свой перелет, добираются до цели столь же уверенно, как и их опытные сородичи. Каким-то образом, чисто инстинктивно, славки прокладывают нужный курс».

Мы уже знаем о совершенно поразительных примерах перелетов, которые демонстрируют полярная крачка и новозеландская бронзовая кукушка.

Что же тогда удивительного в способности птиц возвращаться к своему «дому»! В. Рюппель увозил скворцов от их гнезд в окрестностях Берлина в самых различных направлениях на расстояние до двух тысяч километров. После того как их выпускали, скворцы находили дорогу домой! Дж. Мэтьюз переправил обыкновенного буревестника на самолете с западного побережья Англии в Бостон и там выпустил его. А спустя 12 дней буревестник был найден у своего гнезда! Он летел домой через Атлантический океан, преодолевая по четыреста километров в день.


Рис. 40. Схема планетария и экспериментальной клетки. ? и? - углы, определяющие поле зрения птицы с двух концов жердочки; направление, в котором повернута голова птицы, считалось направлением полета.


Этим невероятным подвигам предлагались самые разные объяснения: и то, что птицы могут чувствовать изменения теплового излучения или магнитного поля Земли, и то, что они способны улавливать изменения сил Кориолиса. Но рано или поздно все эти объяснения отвергались.

Тогда почему же не принять в качестве рабочей гипотезы предположение о существовании у птиц своего рода инстинктивной способности к навигации, возможно, даже похожей на применение человеком компаса, секстанта и хронометра?

В своих первых экспериментах Зауэры использовали круглую клетку со стеклянным верхом, так что славки могли видеть лишь круглый участок неба, находящийся под углом зрения примерно 70°, но не видели никаких наземных ориентиров. Способом, очень похожим на тот, который использовал Крамер в опытах со скворцами, Зауэры наблюдали за поведением славок в период их перелетного беспокойства.

Направления, выбиравшиеся птицами, всегда были очень характерными для определенного вида. Садовые и серые славки, а также славки-черноголовки осенью стремились на юго-запад. Именно в этом направлении они и совершают свои осенние перелеты: от Фрейбурга на юго-запад к Испании, далее к Гибралтару и через пролив в Африку.

А славки-завирушки летят из Фрейбурга на юго-восток через Балканы, а затем поворачивают на юг к долине Нила. В своих клетках они бились также в юго-восточном направлении. Причем не имело значения, была ли данная птица опытным навигатором, которого Зауэры изловили в кустарниках Фрейбурга, или она выросла в изолированной камере их птичника.

Приближая условия опытов к естественным, Зауэры обнаружили, что при ясном звездном небе славки иногда изменяли направление, привлеченные светом метеоров, зарниц или Луны. Если на небо набегали облака, движения птиц становились неуверенными, но, пока они могли видеть сквозь пелену облаков наиболее яркие из звезд, они продолжали указывать верное направление. Когда же облачность становилась настолько плотной, что звезды уже не были видны, птицы, беспомощно попорхав некоторое время, устраивались на ночлег. Подобная дезориентация наблюдалась и в тех случаях, когда эксперименты проводились в закрытом помещении, освещенном рассеянным или поляризованным светом.

На настоящем ночном небе Зауэры, естественно, не могли менять положение звезд по собственному желанию. Но это легко сделать в планетарии, и если славки будут принимать искусственное звездное небо за настоящее, их можно будет «перемещать» в любое место земного шара, не вывозя из Фрейбурга.

Вскоре Зауэры получили возможность воспользоваться цейссовским планетарием, с куполом, имевшим в диаметре шесть метров. Внутри планетария они поставили клетку с птицей и, как и раньше, вели наблюдения за направлением ее поворотов.

В типичном эксперименте, когда купол планетария освещался равномерно рассеянным светом, птица поворачивалась во все стороны, указывая случайные направления (рис. 41, А). Когда славке-черноголовке показали имитацию весеннего неба, она повернулась на северо-восток точно так же, как это бывает в естественных условиях (рис. 41, Б). Под осенним небом она повернулась на юго-запад, в сторону Испании (рис. 41, В). И наконец, славка-завирушка, как и ожидали, указала на юго-восток, на Балканы (рис. 41, Г ).


Рис. 41. Ориентация птиц под искусственным звездным небом. Сплошная линия (С) показывает истинное направление на север, а пунктирная (С1) - направление на «север» в планетарии.


Но главным участником экспериментов в планетарии Зауэры сделали одну славку-завирушку. Осенью птицы этого вида, как уже говорилось, летят в двух последовательных направлениях: сначала из Центральной Европы на юго-восток через Балканы, а затем в южном направлении к верховьям Нила. Поэтому славка-завирушка представляла собой идеальный объект для экспериментов в планетарии, где можно было создать звездное небо, соответствующее широте и долготе любого места.

Завирушка, которую Зауэры использовали в этих экспериментах, была выращена ими из яйца. Она никогда не покидала клетки и, уж конечно, не летала в Африку. Поэтому ее поведение должно было быть абсолютно свободным от каких-либо влияний предшествующего опыта.

Зауэры поместили эту славку-завирушку в планетарий и установили картину неба, соответствующую 48° северной широты, то есть широте Фрейбурга. В подтверждение своих предыдущих наблюдений за другими птицами этого вида под открытым небом Зауэры увидели, что завирушка повернулась в юго-восточном направлении.


Рис. 42. Схема осенней миграции славок-завирушек, основанная на результатах экспериментов в планетарии. Большие стрелки соответствуют преимущественным направлениям естественного перелета, маленькие стрелки представляют собой направления, выбранные птицами в планетарии: заштрихованная зона примерно указывает известную зону зимовок.


Затем они стали менять положение звезд на небосводе планетария, чтобы у славки создалось впечатление ее постепенного перемещения все дальше и дальше к югу. Птица продолжала придерживаться юго-восточного направления, пока не «достигла» 40° северной широты. Теперь она начала менять курс на юго-юго-восток и приблизительно на широте 15° «полетела» прямо на юг. Птица, никогда не покидавшая своей клетки, указала направление, необходимое для перелета из Фрейбурга к верховьям Нила!

Представить себе, каким образом птица определяет широту своего местоположения, по-видимому, нетрудно. Штурман для этого измеряет высоту над горизонтом или направление на какую-то определенную звезду, например Полярную. Вполне вероятно, что и птица определяет широту своего местоположения аналогичным образом.

А как же насчет долготы? Если широту умели определять по положению солнца или звезд над горизонтом еще древние греки, то хронометр, пригодный для определения долготы, появился только в 1761 году. Штурман находит свою долготу сравнением местного времени, определяемого, например, по восходу солнца, с показаниями хронометра, поставленного по гринвичскому времени.

У птицы есть точные внутренние часы, но эти часы в отличие от хронометра обычно показывают местное время, соответствующее пункту ее пребывания. Естествен вопрос, как же птица по звездам узнает долготу своего местоположения?

Чтобы выяснить это, Зауэры поворачивали созвездия вокруг Полярной звезды в соответствии с видом ночного неба на разных долготах, и следовательно, в разных временных поясах, и наблюдали направление полета, избираемое различными видами славок.

Результаты этих экспериментов резко отличались от тех четких данных, которые Зауэры получили, изменяя картины неба, соответствующие разным широтам. На изменения долготы птицы реагировали очень неуверенно, и их поведение трудно было объяснить. Поскольку правильное направление к дому определила всего одна славка, результаты Зауэров посчитали малоубедительными.

В 1965 году К. Гоффман, известный специалист по поведению птиц, писал: «Чтобы выяснить состояние проблемы и более четко понять роль внутренних часов, необходимо, по-видимому, провести более разносторонние эксперименты в условиях планетария, включая и эксперименты с птицами, внутренние часы которых были бы (искусственно) переведены. Насколько мне известно, такие эксперименты не проводились».

До тех пор, пока биологи не выяснят, могут ли птицы воспринимать географическую долготу своего местоположения (и если могут, то как они пользуются этим для определения направления полета), наше понимание этого вопроса будет оставаться на уровне 1960 года.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!