Служба защиты прав потребителей

Пуассоновский поток данных классической и. Процесс пуассона. Простой процесс Пуассона

В пуассоновском потоке событий (стационарном и нестационарном) число событий потока , попадающих на любой участок, распределено по закону Пуассона  


Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий - это поток, обладающий двумя свойствами ординарностью и отсутствием последействия.  

В данном параграфе устанавливается связь между пуассоновскими потоками событий и с непрерывным временем. Показывается, как используется интенсивность пуассоновских стационарных потоков в качестве плотностей вероятностей переходов системы из состояния в состояние при анализе моделей конкретных ситуаций.  

Между пуассоновскими потоками событий и дискретными марковскими процессами с непрерывным временем имеется тесная связь.  

Связь пуассоновских потоков событий с дискретными марковскими процессами с непрерывным временем  

То есть технически, марковскую модель с непрерывным временем построить проще, чем модель с дискретным временем, хотя проблема подчинения пуассоновскому закону распределения всех потоков событий , переводящих элементы системы из состояния в состояние, остается.  

Можно считать, что события, переводящие автомобиль из состояния в состояние, представляют собой потоки событий (например, потоки отказов). Если все потоки событий , переводящие систему (автомобиль) из состояния в состояние, пуассоновские (стационарные или нестационарные), то процесс, протекающий в системе, будет марковским, а плотности вероятности перехода Ху в непрерывной цепи Маркова представляют собой интенсивности потока событий, переводящего систему из состояния Si в состояние Sj. Например, Х03 - интенсивность потока отказов автомобиля, который переводит автомобиль из состояния исправен, работает в состояние находится в ТР.  

Допущения о пуассоновском характере потока событий и о показательном распределении промежутков времени между событиями ценны тем, что позволяют на практике применить мощный аппарат марковских случайных процессов .  

Пуассоновский стационарный (простейший) поток событий  

Пуассоновский стационарным (простейшим) поток событий  

Пуассоновский нестационарный поток событий  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Основное характеристическое свойство нестационарного пуассоновского потока состоит в том, что вероятность наступления определенного числа событий за временной промежуток зависит не только от его длины, но и от момента его начала.  

Одной из основных стохастических характеристик нестационарного пуассоновского потока является дискретная случайная величина X(t т), представляющая собой случайное число событий, наступающих в потоке за промежуток [ t.+t.  

Другой основной стохастической характеристикой нестационарного пуассоновского потока является случайный интервал времени T(tB) между двумя соседними событиями, первое из которых наступило в момент t0.  

Доказательство Вероятность p (t At) того, что система S, находившаяся в момент времени t в состоянии sp за промежуток времени от t до t+Ы перейдет из него в состояние s (см. 4) равна элементу вероятности pfa t) появления события в пуассоновском потоке П.. на элементарном участке от t до +Д (см. Определение 5.11). Но (см. (4.3))  

Система, в которой протекает дискретный марковский процесс с непрерывным временем, перескакивает из одного состояния х в другое xj не самопроизвольно, а под воздействием определенного события, которое мы можем отнести к событиям некоторого пуассоновского потока П.. и считать, таким образом, что переход системы из состояния х в состояние х происходит под воздействием всего потока /L. Привлечение всего потока П.. дает нам возможность рассматривать интенсивность А() этого потока.  

Рассмотрим более подробно случай пуассоновского распределения спроса. Функция затрат будет иметь вид, аналогичный (5.6.18), с заменой интегрирования по х суммированием. Найдем плотность 1> (т) распределения времени дефицита. Распределение времени наступления k -го события пуассоновского потока подчинено закону Эрланга k -го порядка. Дефицит начинается при израсходовании всего запаса S и еще одной единицы, так что  

Общий поток отказов, связанный с попаданием автомобилей исследуемой группы в ТО-2, получается путем наложения (суперпозиции) потоков ТО-2 этих автомобилей. Как показывают расчеты, распределение интервала пробега между событиями в этом потоке подчиняется показательному закону . При этом поток ТО-2 всех исследуемых автомобилей является пуассоновским.  

Образ потока отказов, связанного со списанием автомобиля, является условным. Действительно, если автомобиль отказывает в тот момент, когда происходит первое событие данного потока, то совершенно все равно, продолжается после этого поток отказов или прекращается судьба автомобиля от этого уже не зависит. В случае когда элемент (автомобиль) не подлежит восстановлению, поток отказов является пуассоновским.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых)

Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины с нормальным законом распределения в прикладной теории вероятностей. Такое положение объясняется тем обстоятельством, что в теории потоков, так же как и в теории случайных величин, имеется предельная теорема , согласно которой сумма большого числа независимых потоков с любым законом распределения приближается к простейшему потоку с ростом числа слагаемых потоков.

Стационарным пуассоновским (простейшим) называется поток, обладающий тремя свойствами:ординарностью ,отсутствием последействия истационарностью .

Распределение событий на малом интервале времени

По определению, интенсивностью потока называется предел
, так как простейший поток стационарен, то для него
.

Стационарность потока и отсутствие последействия исключают зависимость вероятности появления событий на интервале
как от расположения этого интервала на оси времени, так и от событий ему предшествующих. Поэтому
.

Для любого промежутка времени имеем . При устремлении
всеми членами правой части этой формулы, за исключением первого, можно пренебречь, т.к. в силу ординарности потока событий эти величины пренебрежимо малы по сравнению с
:

.

С учетом изложенного преобразуем исходное выражение для интенсивности потока:

.

Отсюда имеем равенство
, т.е. вероятность появления одного события на малом интервале времени пропорциональна этому интервалу с коэффициентом.

Очевидно, что
. Следовательно,
, откуда имеем
- вероятность непоявления ни одного события на малом интервале времени
.

Распределение событий в пуассоновском потоке

Найдем выражение
, где
- вероятность того, что на интервале
произойдетсобытий. Это событие произойдет в одном из двух взаимоисключающих случаях:

По теореме сложения вероятностей несовместных событий имеем вероятность наступления ситуации 1 или 2:

Откуда . Устремив
, получим
.

Определим аналогичное соотношение для
. Чтобы событие на интервале
не наступило ни одного раза, необходимо и достаточно, чтобы оно наступило0 раз в интервалеи0 раз - в
. Вероятность этого события равна. Откуда аналогично получим
.

Таким образом, пуассоновский поток событий описывается системой линейных дифференциальных уравнений

,

с очевидными начальными условиями .

Из первого уравнения получаем
, из начальных условий имеем
, откудас = 1 . Окончательно
.

Таким образом, для пуассоновского потока вероятность
отсутствия событий на любом интервале длинойопределяется экспоненциальной зависимостью. Для решения полной системы уравнений используем преобразование Лапласа. Имеем,

откуда
;
и далее
;
; ...
.

Взяв обратное преобразование Лапласа, с помощью таблиц получим
, т.е. распределение Пуассона.

Таким образом, простейший поток подчиняется закону распределения Пуассона, для которого математическое ожидание и дисперсия соответственно равны
.

Распределение интервалов между событиями

Найдем закон распределения интервалов времени между событиями для простейшего потока. Рассмотрим случайную величину - промежуток времени между двумя произвольными соседними событиями в простейшем потоке. Требуется найти функцию распределения
.

Рассмотрим противоположное событие
. Это вероятность того, что, начиная с некоторого момента появления события, за времяне появится больше ни одного события. Так как поток без последействия, то тот факт, что событие появилось в момент , не должен оказать никакого влияния на поведение потока в дальнейшем. Поэтому вероятность
, откуда
и плотность распределения вероятности
.

Такой закон распределения называется показательным (экспоненциальным) с параметром. Найдем математическое ожидание и дисперсиюэтого процесса:

;

Показательный закон обладает замечательным свойством: если промежуток времени, распределенный по показательному закону, уже длился некоторое время , то это никак не влияет на закон распределения оставшейся части промежутка
(он будет таким же, как закон распределения промежутка).

Докажем это свойство. Пусть
- вероятность того, что обслуживание, продолжавшееся(с), еще продлится не менее(с): т.е. на интервале времениa + t не произойдет ни одного события. При показательном законе распределения времени обслуживания
.

По теореме о произведении вероятностей событий . При показательном законе;
и, следовательно,
, т.е. при показательном законе времени обслуживания закон распределения оставшейся части времени обслуживания не зависит от того, сколько времени уже длилось обслуживание. Можно доказать, что показательный закон единственный , для которого справедливо это свойство.

Рассмотренное свойство , по существу, представляет другую формулировку свойстваотсутствия последействия .

ординарность (в каждый момент времени в СМО может пос­тупать не более одной заявки). Ординарность потока означает, что вероятность попадания на элементарный участок Dt двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него ровно одного события, т.е. при Dt->0 эта вероятность представляет собой бесконечно малую высшего порядка.

В каждый момент времени в СМО может пос­тупать не более одной заявки

Примерами ординарных потоков событий могут служить поток деталей, поступающих на конвейер для сборки, поток отказов технического устройства, поток автомашин, прибывающих на станцию техобслуживания. Примером неординарного потока может служить поток пассажиров, прибывающих в лифте на данный этаж.

Для ординарного потока можно пренебречь возможностью совместного появления на элементарном участке двух и более событий. В каждый момент времени в СМО может пос­тупать не более одной заявки

отсутствие последействия - для любых не перекрывающихся участков времени T 1 ,T 2 ,…,T n числа событий Х 1 =Х(t 1 ,T 1),Х 2 =Х(t 2 ,T 2),…., Х n = Х(t n ,T n), попадающих на эти участки, представляют собой независимые случайные величины, т.е. вероятность попадания любого числа событий на один из участков не зависит от того, сколько их попало на другие.

Отсутствие последействия означает, что для любого момента времени t0, будущие моменты наступления события потока (при t>t0) не зависят от того, в какие моменты наступали события в прошлом (при t

Ординарный поток событий, в котором отсутствует последействие, называется пуассоновским потоком.

Стационарность

Поток событий называется стационарным, если все его вероятностные характеристики не меняются со временем. В частности, для стационарного потока событий вероятность попадания того или иного числа событий на участок длины T

зависит только от длины этого участка и не зависит от того, где именно на оси времени 0t этот участок расположен.

Это значит, что числа событий Х 1 (t 1 , T) и Х 2 (t 2 , T), попадающих на два участка одинаковой длины T, будут иметь одинаковые распределения. Отсюда следует, в частности, что для стационарного потока событий его интенсивность l(t) постоянна:

l(t) = l = const

Поток событий, обладающий всеми тремя свойствами, называется простейшим (или стационарным пуассоновским потоком).

Кроме того, к достоинствам простейшего потока можно так­же отнести следующее:

а) Сумма N независимых, ординарных и стационарных пото­ков заявок с интенсивностями сходится к простейшему потоку с интенсивностью , при условии, что складываемые потоки оказывают более или ме­нее одинаково малое влияние на суммарный поток;

б) Поток заявок, полученный путем случайного разрежения
исходного потока, когда каждая заявка с определенной
вероятностью p исключается из потока независимо от того, исключены другие заявки или нет, образует простейший поток с интенсивностью , где - интенсивность исходного потока. В отношении исходного потока заявок делается предположение лишь об ординарности и стационар­ности.

Поток с ограниченным последействием (рекуррентный поток) – поток, у которого случайные интервалы t1, t2,…, tn между соседними по времени событиями представляют собой независимые случайные величины. При его моделировании применяется последовательная (рекуррентная процедура): сначала разыгрывается величина t1, затем t2 и т.д. Например, последовательность вызовов такси.

Пусть в предприятие сервиса через случайные интервалы времени обращаются клиенты, при этом поток заказов однороден (однотипные заказы) и в единицу времени обращается X клиентов. Вероятность прихода клиента не зависит от числа уже обратившихся клиентов, вероятность того, что одновременно обратятся сразу два клиента, мала. Кроме того, число обратившихся клиентов зависит от рассматриваемого интервала времени и не зависит от начала рассмотрения.

Тогда модель математически можно описать следующим образом. Пусть р к (х) означает вероятность прибытия к клиентов в интервале времени длительностью х, p 0 (t ) - вероятность того, что за время (0, /) не будет ни одного клиента, что, согласно (14.2), соответствует вероятности того, что интервал времени до прибытия первого клиента больше, чем t.

Рис. 14.2.

1. Если ijH т2 два неперекрывающихся интервала (рис. 14.2), то предположение о независимости имеет вид:

2. Среднее значение времени между прибытиями клиентов равно

3. Вероятность того, что клиент не придет в течение интервала времени нулевой длительности,

4. Вероятность того, что клиент не придет в течение интервала времени бесконечной длительности,

Такой поток заказов считается простейшим. Поток заказов называется простейшим, или пуассоновским, если он обладает тремя свойствами: стационарен, ординарен и без последействия.

Свойство стационарности к событий потока на любом интервале времени т зависит только от числа к и длительности т.

Свойство ординарности характеризуется тем, что вероятность появления более одного события за малый интервал времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Свойство отсутствия последействия характеризуется тем, что вероятность появления к событий потока на любом интервале времени т не зависит от того, появились или не появились события в моменты, предшествующие началу рассматриваемого интервала.

Пуассоновский поток играет фундаментальную роль в теории систем массового обслуживания, как нормальный процесс в статистике. Большинство других процессов, используемых в системах массового обслуживания, получаются путем модификации пуассоновского.

Рис. 14.3.

Часто на практике трудно установить, обладает ли поток перечисленными выше свойствами. В частности, установлено, что если поток представляет собой сумму (суперпозицию) очень большого числа независимых стационарных потоков, влияние каждого из которых на весь суммарный поток ничтожно мало, то этот суммарный поток при условии его ординарности близок к простейшему. На рис. 14.3 показан пример образования суммарного потока. Указанное свойство сродни центральной предельной теореме нормального распределения.

Рис. 14.4.

Случайный процесс N(t), описывающий такой поток и соответствующий числу прибывших клиентов, является дискретным и в случайные моменты времени может принимать только целочисленные значения. Процесс нестационарный, так как может только возрастать. Реализация процесса показана на рис. 14.4.

В течение малого интервала времени процесс может остаться в том же состоянии или изменить его (увеличить число клиентов на единицу). Другими словами, процесс из состояния Sj может перейти только в состояние $ ,. Пусть вероятность изменения состояния в малом интервале времени dx равна A,dx+o(dx), где А>0. Вероятность сохранения прежнего состояния l-^dx + o(dx). Так как поток ординарен, вероятность смены состояния более одного раза в интервале (/, t+ dx) есть бесконечно малая величина o(dx) высшего порядка по сравнению с dx.

Обозначим вероятность того, что N(t) = n, как р п (х), где x - t-t 0 - интересующий нас интервал времени, т.е. процесс за время х совершил п скачков. Пусть р п (х) зависит только от х и не зависит от начального момента t 0 , от которого отсчитывается х. Поэтому, несмотря на то что процесс нестационарный, случайное число появления запросов на сервис N(t) = п за интервал времени х = t-t Q является постоянной (стационарной) величиной.

Предположим также, что N(t ) не зависит от числа реализаций события, произошедших в любые интервалы времени, предшествующие т, т.е. процесс обладает свойством отсутствия последействия. Вычислим вероятность p n (x + dx) того, что в интервале (x+dx) произойдет п событий.

Очевидно, для того чтобы в интервале (х+dx) произошло п событий, должны совершиться два взаимоисключающих события:

О произошло п событий в интервале х и 0 событий в интервале dx. Вероятность этого в силу независимости равна р п (т)(1 - Xdx);

О произошло п - 1 событий в интервале т и 1 событие в интервале dx. Вероятность этого равна р { (x)A.dx.

Таким образом,

Перенесем в левую часть р п (х) и поделим на dx:

Перейдя к пределу при dx -? 0, получим дифференциальное уравнение:

Рассчитаем вероятность /? 0 (х)того, что на интервале (x+dx) событие не наступит ни разу. Ясно, что для этого событие не должно наступить в интервале х и в интервале dx. Вероятность этого равна /? 0 (х)(1-Ых).

Таким образом,

Соответствующее дифференциальное уравнение имеет вид:

Объединив (14.12) и (14.13) и положив начало рассмотрения процесса с момента^ = 0, а х = t, получим систему дифференциальных уравнений:

Зададимся следующими начальными условиями:

которые означают, что в начальный момент t 0 событие не произошло.

Как видно, уравнения (14.14) и (14.15) являются частным случаем уравнений Колмогорова-Чепмена в дифференциальной форме (13.11) для абсолютных вероятностей и описанный процесс является марковским.

Для нахождения общего решения системы удобно использо-

вать преобразование Лапласа. Пусть p{i) Применяя преобразование Лапласа к обеим частям уравнения (14.14) системы с учетом начальных условий (14.16), получаем

По теореме о начальном состоянии оригинала

По теореме о конечном состоянии оригинала

Полученные характеристики соответствуют рассматриваемой модели.

Обратное преобразование Лапласа (14.17) будет

Применяя преобразование Лапласа к обеим частям (14.15) с учетом начальных условий (14.16), получаем

Согласно (14.17) и (14.18),

По таблице преобразований Лапласа

Используя (14.20), из (14.19) получаем распределение Пуассона

которое дает вероятность того, что в момент t > 0 система находится в состоянии N(f) = п или что за время произойдет п изменений.

Рис. 14.5. Независимые пуассоновские процессы Хт { и Хх 2

Таким образом, число событий внутри фиксированного интервала в пуассоновском потоке распределено по закону Пуассона. При этом число событий N(t { ,t 2) и N{t 3 ,t 4) на неперекрываю- щихся интервалахT t = t 2 -1 { и т 2 = t 4 -1 3 , где t { независимы (рис. 14.5).

На рис. 14.6 показаны плотности вероятности прибытия 0,1,2, 3, 4 клиентов при поступлении их по пуассоновскому закону для интенсивностей X = 0,5 (рис. 14.6, а) и X = 1 (рис. 14.6, б). Как видно, с ростом интенсивности повышается вероятность прибытия клиентов в первые моменты времени.

Вероятность того, что за время t поступит не более п заказов, определяется функцией распределения

Рис. 14.6. Плотность вероятности Пуассона при X = 0,5 (а) и А. = 1 (б) 1-р(0У, 2-р{) 3-р(2У, 4-р(3);5-р(4)

Согласно (11.41), производящая функция для распределения Пуассона (14.21) по дискретному значению п

(14.23)

Математическое ожидание числа прибывших клиентов, распределенных по Пуассону, в соответствии с (11.43)

Таким образом, среднее число событий N(t) в интервале / равно U.

Дисперсия, характеризующая рассеивание числа заказов в интервале /, согласно (11.44),

Как видно, дисперсия простейшего потока равна математическому ожиданию. Данное свойство может служить критерием соответствия потока заказов простейшему.

Формула Пуассона (14.21) отражает все свойства простейшего потока. В самом деле, из формулы видно, что вероятность появления п событий за время t при заданной интенсивности А, является функцией только /, что характеризует свойство стационарности. В формуле не используется информация о появлении событий до начала рассматриваемого промежутка, что характеризует свойство отсутствия последействия. Если и т 2 два неперекрывающихся интервала времени, то свойство независимости имеет место, так как

Вероятность появления более одного события за малый интервал времени р (/) = (А,/) 2 /2!. Эта вероятность пренебрежимо мала

по сравнению с вероятностью наступления одного события, равной АЛ, что характеризует свойство ординарности потока.

Найдем далее для пуассоновского процесса распределение вероятностей интервалов между двумя последовательными событиями. Пусть случайная величина Т характеризует длину этих интервалов. Обозначим через F{x) функцию распределения этой случайной величины. По определению, F(x) - это вероятность того, что Т Вероятность того, что в интервале времени не произошло событие, если оно произошло в момент t 0 , равна безусловной вероятности

т.е.

Следовательно, функция распределения длины интервала между двумя последовательными событиями имеет вид показательного закона:

Продифференцировав (14.25), получим соответствующую плотность вероятности интервала между двумя событиями:

С учетом (14.26) и (14.24) вероятность того, что заказ появится внутри интервала (x,T+dx), можно записать как

т.е. вероятность поступления заказа внутри интервала (x,T + dx) равна A,dx, не зависит от х и пропорциональна dx. Величина X называется параметром показательного закона. Поскольку X не зависит от длительности интервала х, экспоненциальное распределение не имеет памяти и не имеет возраста (см. рис. 10.7).

Таким образом, для простейшего потока с интенсивностью X случайная величина Т, представляющая интервал между соседними заказами (событиями), имеет экспоненциальное распределение с функцией распределения (14.25) и плотностью распределения (14.26). Если время между прибытиями клиентов имеет экспоненциальное распределение со средним значением Т, тогда случайная переменная N(t), представляющая число клиентов, прибывших в фиксированный интервал , имеет пуассоновское распределение с параметром Xt, где Х=/Т. В силу марковости процесса интервалы между событиями взаимно независимы. Отсюда процесс, у которого интервалы между событиями взаимно независимы и подчинены показательному закону, является пуассоновским процессом.

В соответствии с разностными уравнениями (14.11) можно изобразить граф пуассоновского процесса (рис. 14.7). Вершины графа обозначают состояния системы, которые для пуассоновского потока клиентов соответствуют числу поступивших клиентов. Над дугами показаны вероятности перехода.

Рис. 14.7.

При большом промежутке времени вероятность перехода в соседнее состояние стремится к единице, а вероятность остаться в том же состоянии - к нулю и граф на рис. 14.7 преобразуется в граф на рис. 14.8. Над дугами графа показана интенсивность, с которой осуществляются переходы. Время нахождения процесса в состоянии случайно и распределено по экспоненциальному закону с математическим ожиданием /Х. В среднем через время 1Д система переходит в следующее состояние, что соответствует поступлению очередного клиента. Так как процесс ординарен, переход возможен только в соседние состояния. Передаточная функция дуги соответствует преобразованию Лапласа экспоненциального распределения (10.47).

Интервал времени между двумя соседними событиями простейшего потока имеет распределение:

f 1 (x) = f(x) = (x³0),

где - интенсивность потока.

Используя метод имитации показательного (экспоненциального) распределения, получаем следующий способ моделирования пуассоновского потока:

t 0 =0; t j = t j -1 - (1/ ) lnu , (j=1,2,3,...).

Величина u - случайное число, получаемое от ДСЧ.

Равномерный поток

Для этого потока событий считается, что промежуток времени между последовательными событиями равномерно распределён на интервале , т.е.

f(x)=1/(b-a) , (a£x£b).

f 1 (x)=2(b-x)/(b-a) 2 ;

F 1 (x)=1-[(b-x) 2 /(b-a) 2 ] , (a£x£b)

Применяя для моделирования метод обратной функции, получим алгоритм вычисления первого момента времени

где u получают от ДСЧ.

Окончательно имеем следующий алгоритм моделирования равномерного потока:

1) момент времени t 1 наступления первого события вычисляется по формуле

2) для последующих моментов времени производимы вычисления по формуле

t j =t j -1 + a + (b-a)u;

Величина u вырабатывается ДСЧ.

Поток Эрланга порядка k

Потоком Эрланга k-го порядка называют поток событий, получающегося "прореживанием" простейшего потока, когда сохраняется каждая k-я точка (событие) в потоке, а все промежуточные выбрасываются.

Интервал времени между двумя соседними событиями в потоке Эрланга k-го порядка представляет собой сумму k независимых случайных величин Z 1 ,Z 2 ,...,Z k , имеющих показательное распределение с параметром λ:

Закон распределения случайной величины Z называется законом Эрланга k-го порядка и имеет плотность

, (x > 0).

Математическое ожидание и дисперсия случайной величины Z соответственно равны:

M[Z]=k/ ; D[Z]=k/ 2 .

На основе определения потока Эрланга получается простой способ моделирования: прореживается пуассоновский поток с интенсивностью = /k, т.е. в пуассоновском потоке допускаем моменты времени с номерами 1,2,...,k-1, а k-й момент оставляем, т.к. он принадлежит новому потоку и т.д. Таким образом, моменты времени потока Эрланга вычисляются по формулам:



где - интенсивность потока Эрланга k-го порядка, u j - случайные числа от ДСЧ.

3. ОБЪЕКТЫ И СРЕДСТВА ИССЛЕДОВАНИЯ

Объектами исследования в лабораторной работе являются потоки событий, образованные слиянием нескольких потоков с известными характеристиками.

В процессе имитации потоков событий используются различные методы сортировки.

Одним из простых методов сортировки является метод пузырька (BUBBLE) который позволяет массив A, содержащий N элементов, расположить, например, в возрастающем порядке. Соответствующий алгоритм приведен на рис.4.1. Однако. Более эффективным методом для данного типа задач будет метод вставки.

процедура BUBBLE(A, N);

Цикл I=1,N1;

Если A(K) £ A(J) то идти к 20;

Если (K³1), то идти к 10;

Рис.4.1. Подпрограмма сортировки методом пузырька

В лабораторной работе могут быть использованы и другие более эффективные методы сортировки (например, адресная сортировка и т.п.).

4. ПОДГОТОВКА К РАБОТЕ

4.1. Ознакомиться с основными типами потоков событий.

4.2. Ознакомиться с методами моделирования пуассоновского, равномерного потока событий и потока Эрланга порядка k.

4.3. Ознакомиться с методами сортировки массивов чисел.

5. ПРОГРАММА РАБОТЫ

В некоторую систему массового обслуживания по различным каналам поступают заявки, образующие поток событий заданного типа. На входе системы потоки сливаются в один. Составить алгоритм и программу имитации результирующего потока, указанного в варианте.

Первые 100 моментов времени поступления заявок в результирующем потоке вывести на печать. По первым 1000 заявкам рассчитать оценку средней интенсивности потока. Найденную оценку сравнить с теоретическим значением интенсивности потока.

5.1. Поток образован слиянием трёх пуассоновских потоков событий с интенсивностями 1 , 2 , 3 (1/с) (табл.5.1.).

Таблица 5.1.

Вариант
1 2,5 1,5
2 0,5
3 0,5 0,5 0,5

5.2. Поток образован слиянием двух равномерных потоков с параметрами a 1 , b 1 и a 2 , b 2 (с) (табл. 5.2.).

Таблица 5.2.

Вариант
a 1 1,5
b 1 2,5 1,5
a 2 0,5
b 2

5.3. Поток образован слиянием пуассоновского потока с интенсивностью (1 /с) и равномерного потока с параметрами a и b (с) (табл.5 3.).

Таблица 5.3.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Дать определение потока событий.

6.2. Как строится вероятностное описание потока событий.

6.3. В чём состоит способ моделирования стационарного потока с ограниченным последствием.

6.4. Охарактеризовать пуассоновский поток и способ его моделирования.

6.5. Охарактеризовать равномерный поток и способ его моделирования.

6.6. Дать характеристику потока Эрланга k-го порядка и метода его имитации.

6.7. Привести характеристики потока событий, исследованного в лабораторной работе.

Лабораторная работа 6

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!